significance for the model.17 The model was validated17 and
displayed excellent statistical parameters for leave-1-out cross
validation (0.70), leave-10-out cross validation r2 (0.70) and
bootstrap r2 (0.76). The same model was found consistently,
running the genetic algorithm procedure many times. This con-
vergence gives us confidence that this is an extremely good model
with respect to this data set. As can be seen graphically in Fig. 1,
this model is statistically robust. Other statistical measures and
graphs corroborate this (supporting information).
(h) C.-G. Feng, Z.-Q. Wang, P. Tian, M.-H. Xu and G.-Q. Lin,
Chem.–Asian J., 2008, 3, 1511; (i) C. Shao, H.-J. Yu, N.-Y. Wu,
C.-Q. Feng and G.-Q. Lin, Org. Lett., 2010, 12, 3820; (j) Y. Luo
and A. J. Carnell, J. Org. Chem., 2010, 75, 2057; (k) G. Pattison,
G. Piraux and H. W. Lam, J. Am. Chem. Soc., 2010, 132, 14373;
(l) A. Saxena and H. W. Lam, Chem. Sci., 2011, 2, 2326–2331.
3 Y. Luo and A. J. Carnell, Angew. Chem. Int. Ed., 2010, 49, 2750.
4 (a) R. Shintani, K. Ueyama, I. Yamada and T. Hayashi, Org. Lett.,
2004, 6, 3425; (b) Y. Otomaru, K. Okamoto, R. Shintani and
T. Hayashi, J. Org. Chem., 2005, 70, 2503; (c) T. Gendrineau,
O. Chuzel, H. Eijsberg, J.-P. Genet and S. Darses, Angew. Chem.,
Int. Ed., 2008, 47, 7669; (d) Z.-Q. Wang, C.-G. Feng, M.-H. Xu
and G.-Q. Lin, J. Am. Chem. Soc., 2007, 129, 5336;
(e) K. Okamoto, T. Hayashi and V. H. Rawal, Chem. Commun.,
2009, 4815.
5 For examples of sulfino/alkene hybrid ligands, see: (a) Y. Wang,
X. Feng and H. Du, Org. Lett., 2011, 13, 4954; (b) X. Feng,
Y. Wang, B. Wei, J. Yang and H. Du, Org. Lett., 2011, 13, 3300;
(c) T. Thaler, L. N. Guo, A. K. Steib, M. Raducan,
K. Karaghiosoff, P. Mayer and P. Knochel, Org. Lett., 2011,
13, 3182; (d) S.-S. Jin, H. Wang and M.-H. Xu, Chem. Commun.,
2011, 47, 7230; (e) W.-Y. Qi, T.-S. Zhu and M.-H. Xu, Org. Lett.,
2011, 13, 3410; (f) G. Chen, J. Gui, L. Li and J. Liao, Angew.
Chem., Int. Ed., 2011, 50, 7681.
6 (a) T. Hayashi, M. Takahashi, Y. Takaya and M. Ogasawara,
J. Am. Chem. Soc., 2002, 124, 5052; (b) A. Kina, H. Iwaamura and
T. Hayashi, J. Am. Chem. Soc., 2006, 128, 3904; (c) A. Kina,
Y. Yasuhara, T. Nishimura, H. Iwamura and T. Hayashi,
Chem.–Asian J., 2006, 1, 707.
7 For DFT analysis on Rh-diphosphine-catalyzed conjugate
addition see: (a) T. Itoh, T. Mase, T. Nishikata, T. Iyama,
H. Tachikawa, Y. Kobayashi, Y. Yamamotod and N. Miyaurad,
Tetrahedron, 2006, 62, 9610; (b) T. Korenaga, K. Osaki,
R. Maenishi and T. Sakai, Org. Lett., 2009, 11, 2325.
Examination of the QSPR model revealed that the descrip-
tors were MATS6i (a 2D auto-correlation descriptor—Moran
autocorrelation of lag 6 weighted by ionisation potential14),
MATS3m (a 2D auto-correlation descriptor—Moran auto-
correlation of lag 3 weighted by mass14) and nCt (number of
total tertiary C(sp3)14). nCt is related to the steric properties of
the ligand whereas MATS6i and MATS3m are related to the
electronic properties of the ligands. However, precise inter-
pretation of the descriptors for ‘‘manual’’ ligand design is
challenging. Thus the design of future ligands can be performed
in silico. Virtual screening using this QSPR of an in silico
generated library of candidate ligands should identify potential
ligands that will afford high ee values.
In the asymmetric rhodium-catalysed conjugate addition to
acyclic enones there is a general trend in that more electron
deficient diene ligands give better enantioselectivity and that
electronic effects are more important than steric effects. This is
corroborated by recent DFT calculations for cyclohexanone
as the substrate.9,10 However, for the acyclic substrates in
particular the variation in ee is difficult to rationalize. We have
developed a robust QSPR model that will be employed in the
future for in silico ligand design of chiral diene lignds.
8 For DFT analysis on Pd-diphosphine-catalyzed conjugate addition
see: (a) T. Nishikata, Y. Yamamoto, I. D. Gridnev and
N. Miyaura, Organometallics, 2005, 24, 5025; (b) Y. Lan and
K. N. Houk, J. Org. Chem., 2011, 76, 4905–4909.
9 E. A. B. Kantchev, Chem. Commun., 2011, 47, 10969.
10 S. Gosiewska, J. A. Raskatov, R. Shintani, T. Hayashi and
J. M. Brown, Chem.–Eur. J., 2012, 18, 80.
Notes and references
11 Y. Luo and A. J. Carnell, unpublished results.
12 (a) N. Weill, C. R. Corbeil, J. W. De Schutter and N. Moitessier,
J. Comput. Chem., 2011, 32, 2878–2889; (b) S. E. Denmark,
N. D. Gould and L. M. Wolf, J. Org. Chem., 2011, 76, 4337;
(c) J. C. Ianni, V. Annamalai, P.-W. Phuan, M. Panda and
M. C. Kozlowski, Angew. Chem., 2006, 118, 5628.
13 Talete srl, DRAGON (Software for Molecular Descriptor Calcu-
14 R. Todeschini and V. Consonni, Molecular Descriptors, Wiley-VCH,
2009.
1 For selected reviews and highlights, see: (a) F. Glorius, Angew.
Chem., Int. Ed., 2004, 43, 3364; (b) C. Defieber, H. Grutzmacher
and E. M. Carreira, Angew. Chem., Int. Ed., 2008, 47, 4482;
(c) R. Shintani and T. Hayashi, Aldrichimica Acta, 2009, 42, 31.
2 (a) W. C. Boyd, M. R. Crimmin, L. E. Rosebrugh,
J. M. Schomaker, R. G. Bergman and F. D. Toste, J. Am. Chem.
Soc., 2010, 132, 16365; (b) X. Hu, M. Zhuang, Z. Cao and H. Du,
Org. Lett., 2009, 11, 4744; (c) X. Hu, Z. Cao, Z. Liu, Y. Wang and
H. Du, Adv. Synth. Catal., 2010, 352, 651; (d) Z. Cao and H. Du,
Org. Lett., 2010, 12, 2602; (e) Q. Li, Z. Dong and Z.-X. Yu, Org.
Lett., 2011, 13, 1122; (f) B. M. Trost, A. C. Burns and T. Tautz,
Org. Lett., 2011, 13, 4566; (g) C.-G. Feng, Z.-Q. Wang, C. Shao,
M.-H. Xu and G.-Q. Lin, Org. Lett., 2008, 10, 4101;
16 J. G. Topliss and R. P. Edwards, J. Med. Chem., 1979, 22, 1238.
17 A. Tropsha, P. Gramatica and V. K. Gombar, QSAR Comb. Sci.,
2003, 22, 69.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3279–3281 3281