W. Guerrant et al. / Bioorg. Med. Chem. Lett. 23 (2013) 3283–3287
3287
inhibiting templates with identical linker lengths and anticancer
References and notes
activities. Inhibitors were dosed at concentrations near the deter-
mined IC50’s in DU-145 (Table 2) and p21waf1 expression was
probed via immunoblot (Fig. 4). Equivalent protein loading was
demonstrated using an anti-actin antibody (Fig. 4, top). Both SAHA
and SN-38 resulted in marked upregulation of p21waf1 expression
levels with 24 hour treatment (Fig. 4, bottom, lanes 2–5). Gratify-
ingly, we observed that the dual-acting compounds 5c and 5g re-
sulted in substantial upregulation of p21waf1 expression in a
concentration-dependent manner with 5g causing upregulation
at levels comparable to SN-38 (Fig. 4, bottom panel, lanes 6–9).
These results suggest that compounds 5c and 5g derived their
cytotoxic activity, in part, through HDAC inhibition. It is unclear
at present how much of the p21waf1-dependent anticancer activity
is contributed by each inhibiting moiety as both SAHA and SN-38
significantly increased p21waf1 expression. Subsequent investiga-
tion into the expression levels of other cellular markers could clar-
ify the driving force behind the cellular effects observed.
A new class of dual-acting HDAC–Topo I inhibitors has been cre-
ated from camptothecin and SAHA-like templates. Two types of
camptothecin templates were used and both were connected
through their 10-hydroxy moieties to alklyltriazolyl hydroxamates
that we have shown possess enhanced HDAC inhibition activity.34
Results from cell-free and whole cell studies showed that these
compounds possess inhibition activities against both target en-
zymes and inhibit the growth of DU-145 prostate carcinoma cells.
Relative to the camptothecin standard SN-38, the functionalization
of the 10-hydroxy moiety presented no observable deleterious
effect on the Topo I inhibition by 7-ethyl-10-hydroxycamptothe-
cin-derived conjugates 5a–e and only minor attenuation in the
inhibitory activities of 10-hydroxycamptothecin-derived conju-
1. (a) Morphy, R.; Kay, C.; Rankovic, Z. Drug Discovery Today 2004, 9, 641; (b)
Morphy, R.; Rankovic, Z. J. Med. Chem. 2005, 48, 6523; (c) Gangjee, A.; Lin, X.;
Kisliuk, R. L.; McGuire, J. J. J. Med. Chem. 2005, 48, 7215.
2. Kerr, D. J.; La Thangue, N. B. Ann. Oncol. 2004, 15, 1727.
3. Zhou, J.; Goh, B. C.; Albert, D. H.; Chen, C. S. J. Hematol. Oncol. 2009, 2, 33.
4. O’Farrell, A. M.; Abrams, T. J.; Yuen, H. A.; Ngai, T. J.; Louie, S. G.; Yee, K. W. H.;
Wong, L. M.; Hong, W.; Lee, L. B.; Town, A.; Smolich, B. D.; Manning, W. C.;
Murray, L. J.; Heinrich, M. C.; Cherrington, J. M. Blood 2003, 101, 3597.
5. Kogen, H.; Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.;
Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.;
Kaneko, T. Org. Lett. 2002, 4, 3359.
6. Davie, J. R.; Hendzel, M. J. J. Cell. Biochem. 1994, 55, 98.
7. Wolffe, A. P. Science 1996, 272, 371.
8. Braunstein, M.; Rose, A. B.; Holmes, S. G.; Allis, C. D.; Broach, J. R. Genes Dev.
1993, 592.
9. Kim, M. S.; Kwon, H. J.; Lee, Y. M.; Baek, J. H.; Jang, J. E.; Lee, S. W.; Moon, E. J.;
Kim, H. S.; Lee, S. K.; Chung, H. Y.; Kim, C. W.; Kim, K. W. Nat. Med. 2001, 7, 437.
10. Cress, W. D.; Seto, E. J. Cell Physiol. 2000, 184, 1.
11. Gu, W.; Roeder, R. G. Cell 1997, 90, 595.
12. Marzio, G.; Wagener, C.; Gutierrez, M. I.; Cartwright, P.; Helin, K.; Giacca, M. J.
Biol. Chem. 2000, 275, 10887.
13. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida,
M.; Wang, X. F.; Yao, T. P. Nature 2002, 417, 455.
14. Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki,
T.; Tsuruo, T.; Nakanishi, O. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4592.
15. Glick, R. D.; Swindemen, S. L.; Coffey, D. C.; Rifkind, R. A.; Marks, P. A.; Richon,
V. M.; La Quaglia, M. P. Cancer Res. 1999, 59, 4392.
16. Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.;
Thaler, H. T.; Rifkind, R. A.; Marks, P. A.; Richon, V. M. Cancer Res. 2000, 60, 5165.
19. Byrd, J. C.; Marcucci, G.; Parthun, M. R.; Xiao, J. J.; Klisovic, R. B.; Moran, M.; Lin,
T. S.; Liu, S.; Sklenar, A. R.; Davis, M. E.; Lucas, D. M.; Fischer, B.; Shank, R.;
Tejaswi, S. L.; Binkley, P.; Wright, J.; Chan, K. K.; Grever, M. R. Blood 2005, 105,
959.
20. Gryder, B. E.; Sodji, Q. H.; Oyelere, A. K. Future Med. Chem. 2012, 4, 505.
21. Wang, J. C. Annu. Rev. Biochem. 1985, 54, 665.
22. Champoux, J. J. Annu. Rev. Biochem. 2001, 70, 369.
23. Chen, A. Y.; Liu, L. F. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 191.
24. Froelich-Ammon, S. J.; Osheroff, N. J. Biol. Chem. 1995, 270, 21429.
25. Pommier, Y. Chem. Rev. 2009, 109, 2894.
26. Hsiang, Y. H.; Lihou, M. G.; Liu, L. F. Cancer Res. 1989, 49, 5077.
27. Matsukawa, Y.; Marui, N.; Sakai, T.; Satomi, Y.; Yoshida, M.; Matsumoto, K.;
Nishino, H.; Aoike, A. Cancer Res. 1993, 53, 1328.
28. Bevins, R. L.; Zimmer, S. G. Cancer Res. 2005, 65, 6957.
29. Guerrant, W.; Patil, V.; Canzoneri, J. C.; Oyelere, A. K. J. Med. Chem. 2012, 55,
1465.
30. Zhang, R.; Li, Y.; Cai, Q.; Liu, T.; Sun, H.; Chambless, B. Cancer Chemother.
Pharmacol. 1998, 41, 257.
31. Chen, Z. S.; Furukawa, T.; Sumizawa, T.; Ono, K.; Ueda, K.; Seto, K.; Akiyama, S. I.
Mol. Pharmacol. 1999, 55, 921.
32. Sugimori, M.; Ejima, A.; Ohsuki, S.; Uoto, K.; Mitsui, I.; Matsumoto, K.; Kawato,
Y.; Yasuoka, M.; Sato, K.; Tagawa, H.; Terasawa, H. J. Med. Chem. 1994, 37, 3033.
33. (a) Leu, Y. L.; Chen, C. S.; Wu, Y. J.; Chern, J. W. J. Med. Chem. 2008, 51, 1740; (b)
Ulukan, H.; Swaan, P. W. Drugs 2002, 62, 2039.
34. (a) Chen, P. C.; Patil, V.; Guerrant, W.; Green, P.; Oyelere, A. K. Bioorg. Med.
Chem. 2008, 16, 4839; (b) Oyelere, A. K.; Chen, P. C.; Guerrant, W.; Mwakwari,
S. C.; Hood, R.; Zhang, Y.; Fan, Y. J. Med. Chem. 2009, 52, 456; (c) Mwakwari, S.
C.; Guerrant, W.; Patil, V.; Khan, S. I.; Tekwani, B. L.; Gurard-Levin, Z. A.;
Mrksich, M.; Oyelere, A. K. J. Med. Chem. 2010, 53, 6100.
35. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2002, 41, 2596; (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057.
gates 5f–h at the concentration tested (50 lM). Despite their
potent Topo I inhibition activities in cell-free DNA plasmid relaxa-
tion assays, these compounds displayed anticancer activities
against DU-145 cells at levels more comparable to the HDACi stan-
dard SAHA. One plausible explanation for this observation is that
the functionalization of the 10-hydroxy moiety may negatively im-
pact the binding of these conjugates to Topo I as crystallographic
evidence suggests that the 10-hydroxy group is involved in a
hydrogen bonding interaction with a water molecule oxygen at
the Topo I active site.42 Alternatively, the ability of these conju-
gates to interact with other tumor growth-inhibiting secondary
targets of camptothecins43,44 may be compromised.
Overall, these compounds show promise as potent anticancer
agents with the potential to broadly arrest tumor growth by inhib-
iting two essential enzymes. Ongoing efforts in our laboratory are
on the design of a second generation conjugates which retain the
10-hydroxy moiety of camptothecinin order to better understand
the mechanism of antiproliferative activity of this class of
compounds.
36. Patil, V.; Guerrant, W.; Chen, P. C.; Gryder, B.; Benicewicz, D.; Khan, S.;
Tekwani, B.; Oyelere, A. K. Bioorg. Med. Chem. 2010, 18, 415.
37. HDAC Fluorimetric Assay/Drug Discovery Kit. AK-500 Manual. Fluorescent Assay
System; Enzo Life Sciences, (BIOMOL International), L.P.; Plymouth Meeting, PA,
2005.
38. Madhavaiah, C.; Verma, S. Bioorg. Med. Chem. Lett. 2003, 13, 923.
39. Dexheimer, T. S.; Pommier, Y. Nat. Protoc. 2008, 3, 1736.
40. Kawato, Y.; Aonuma, M.; Hirota, Y.; Kuga, H.; Sato, K. Cancer Res. 1991, 51,
4187.
41. Larsen, A. K.; Gilbert, C.; Chyzak, G.; Plisov, S. Y.; Naguibneva, I.; Lavergne, O.;
Lesueur-Ginot, L.; Bigg, D. C. H. Cancer Res. 2001, 61, 2161.
42. Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B., Jr.; Stewart, L.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15387.
43. Bredholt, T.; Dimba, E. A. O.; Hagland, H. R.; Wergeland, L.; Skavland, J.; Fossan,
K. O.; Tronstad, K. J.; Johannessen, A. C.; Vintermyr, O. K.; Gjertsen, B. T. Mol.
Cancer 2009, 8, 101.
Acknowledgments
This work was financially supported by NIH Grant
R01CA131217. W.G. and J.C.C. are recipients of the GAANN predoc-
toral fellowship from the Georgia Tech Center for Drug Design,
Development, and Delivery. R.H. is a Beckman Undergraduate
Research Fellow.
Supplementary data
Supplementary data associated with this article can be found, in
44. Chatterjee, D.; Schmitz, I.; Krueger, A.; Yeung, K.; Kirchoff, S.; Krammer, P. H.;
Peter, M. E.; Wyche, J. H.; Pantazis, P. Cancer Res. 2001, 61, 7148.