104
S.M. Emam et al. / Spectrochimica Acta Part A 92 (2012) 96–104
[30,42].
The in-plane and out-plane -bonding coefficients (ˇ1 and ˇ2)
References
[1] S.M. Emam, F.A. El-Saied, S.A. AbouEl-Enein, H.A. El-Shater, Spectrochim. Acta
Part A 72 (2009) 291–297.
are dependent upon the values of ꢅ1 and ꢅ2 as in these expressions
[39,40]:
[2] A.R. Yaul, V.V. Dhande, A.S. Aswar, Rev. Roum. Chim. 55 (2010) 537–542.
[3] A.S. El-Tabl, F.A. El-Saied, W. Plass, A.N. Al-Hakimi, Spectrochim. Acta Part A 71
(2008) 90–99.
[4] Y. Li, Z.-Y. Yang, M.-F. Wang, J. Fluoresc. 20 (2010) 891–905.
[5] S.B. Desai, P.B. Desai, K.R. Desai, Heterocycl. Commun. 7 (2001) 83–90.
[6] M.S. Niasari, A. Amiri, Appl. Catal. A 290 (2005) 46–53.
[7] M.C.R. Arguelles, M.B. Ferrari, F. Bisceglie, C. Plizzi, G. Pelosi, S. Pinelli, M. Sassi,
J. Inorg. Biochem. 98 (2004) 313–321.
[8] P. Yogeeswari, N. Menon, A. Semwal, M. Arjun, D. Sriram, Eur. J. Med. Chem. 46
(2011) 2964–2970.
[9] S.A. AbouEl-Enein, F.A. El-Saied, T.I. Kasher, A.H. El-Wardany, Spectrochim. Acta
Part A 67 (2007) 737–743.
[10] F.A. El-Saied, S.A. AbouEl-Enein, S.M. Emam, H.A. El-Shater, Polish J. Chem. 83
(2009) 1871–1883.
[11] T.M. Aminabhavi, N.S. Biradar, S.B. Patil, D.E. Hoffman, V.N. Biradar, Inorg. Chim.
Acta 135 (1987) 139–143.
[12] A.W. Bauer, M.D.K. Kirby, J.C. Sherris, M.D. Truck, Am. J. Clin. Pathol. 45 (1966)
493–496.
[13] P.S. Negi, G.K. Jayaprakasha, B.S. Jena, LWT—Food Sci. Technol. 41 (2008)
1857–1861.
=
8ꢆo
(g⊥ − 2.0023)ꢅ1
2ꢆo
˛2ˇ2
=
,
˛2ˇ12
The value of ˇ12 = 0.84 indicates a moderate degree of covalency of
the in-plane -bonding; while ˇ2 = 1.65, assigns ionic character of
the out-of-plane -bonding [3,43].
The approximate orbital population for the d orbital was esti-
mated by [44,45]:
ꢀ
ꢁ
(A// + 2A )
⊥
7
4
Aiso
=
,
A// = Aiso − 2B 1 +
ꢈg//,
3
2B
ꢈg// = g// − 2.0023, ap2,d
=
2Bo
[14] T.M. Hansen, Y.-G. Gu, T.M. Rehm, P.J. Dandliker, L.E. Chovan, M.H. Bui, A.M.
Nilius, B.A. Beutel, Bioorg. Med. Chem. Lett. 15 (2005) 2716–2719.
[15] J. Lewis, R.G. Wilkins, Modern Coordination Chemistry, Interscience, New York,
1960, p. 403.
[16] L.S. Vojinovic, V.M. Leovac, S.B. Novakovic, G.A. Bogdanovic, J.J. Csanadi, V.I.
Cesljevic, Inorg. Chem. Commun. 7 (2004) 1264–1268.
[17] R. Gup, B. Kirkan, Spectrochim. Acta Part A 62 (2005) 1188–1195.
[18] A.S. El-Tabl, Bull. Korean Chem. Soc. 25 (2004) 1757–1763.
[19] H.F. Abd El-halim, M.M. Omar, G.G. Mohamed, Spectrochim. Acta Part A 78
(2011) 36–44.
ing that the ground state is d(x
2
)
2
−y
The spectrum of copper complex (14) shows non-axial parame-
ter (Table 4) where gx = 2.23, gy = 2.09 and gz = 2.03. The geometric
parameter, R = (gy − gz)/((gx − gy) = 0.43, means that
a d(x
2
2
−y
)
ground state prevails [25,46]. The gy value <2.3 was reported for
[20] N. Al-Awadi, N.M. Shuaib, A. El-Dissouky, Spectrochim. Acta Part A 65 (2006)
36–43.
covalent bond character [25,47,48].
[21] D.C. Sulikowska, A. Czylkowska, J. Therm. Anal. Calorim. 76 (2004) 543–555.
[22] A.S. El-Tabl, S. AbouEl-Enein, J. Coord. Chem. 57 (2004) 281–294.
[23] M.S. Masoud, S.A. AbouEl-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta Part
A 60 (2004) 77–87.
[24] M.S. Refat, I.M. El-Deen, H.K. Ibrahim, S. El-Ghool, Spectrochim. Acta Part A 65
(2006) 1208–1220.
[25] H.M. El-Tabl, F.A. El-Saied, M.I. Ayad, Synth. React. Inorg. Met. Org. Chem. 32
(2002) 1189–1203.
[26] M.F.R. Fouda, M.M. Abd El-Zaher, M.M.E. Shakdofa, F.A. El-Saied, M.I. Ayad, A.S.
El-Tabl, Trans. Met. Chem. 33 (2008) 219–228.
[27] P.K. Singh, D.N. Kumar, Spectrochim. Acta Part A 64 (2006) 853–858.
[28] S.A. AbouEl-Enein, J. Therm. Anal. Calorim. 91 (2008) 929–936.
[29] S.A. AbouEl-Enein, F.A. El-Saied, S.M. Emam, M.A. El-Salamony, Spectrochim.
Acta Part A 71 (2008) 421–429.
[30] H.A. El-Boraey, S.M. Emam, D.A. Tolan, A.M. El-Nahas, Spectrochim. Acta Part A
78 (2011) 360–370.
[31] R. Sharma, S.K. Agarwal, S. Rawat, M. Nagar, Trans. Met. Chem. 31 (2006)
201–206.
[32] D. Kumar, P.K. Gupta, A. Syamal, J. Chem. Sci. 117 (2005) 247–253.
[33] A.M. Donia, H.A. El-Boraey, M.F. El-Samalehy, J. Therm. Anal. Calorim. 73 (2003)
987–1000.
[34] O.I. Singh, M. Damayanti, N.R. Singh, R.K.H. Singh, M. Mohapatra, R.M. Kadam,
Polyhedron 24 (2005) 909–916.
[35] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143–207.
[36] M.S. Masoud, S.A. AbouEl-Enein, I.M. Abed, A.E. Ali, J. Coord. Chem. 55 (2002)
153–178.
[37] D.E. Nickless, M.J. Power, F.N. Urbach, Inorg. Chem. 22 (1983) 3210–3217.
[38] A.S. El-Tabl, F.A. El-Saied, A.N. Al-Hakim, J. Coord. Chem. 61 (2008) 2380–2401.
[39] Z.L. Lu, C.Y. Duan, Y.P. Tian, X.Z. You, Inorg. Chem. 35 (1996) 2253–2258.
[40] E.I. Solomon, M.J. Baldwin, M.D. Lowery, Chem. Rev. 92 (1992) 521–542.
[41] R.P. John, A. Speekanth, M.R.P. Kurup, A. Usman, A.R. Ibrahim, H.K. Fun, Spec-
trochim. Acta Part A 59 (2003) 1349–1358.
[42] A.S. El-Tabl, F.A. El-Saied, A.N. Al-Hakim, Trans. Met. Chem. 32 (2007) 689–701.
[43] S. Chandra, D. Jain, A.K. Sharma, Spectrochim. Acta Part A 71 (2009) 1712–1719.
[44] M.C.R. Symon, Chemical and Biochemical Aspect of Electron Spin Resonance
Spectroscopy, Van Nostrand Resinhold Company Ltd., Molly Millors Lane, Wok-
inghold, Berkshire, England, 1978.
3.2.4. Thermal studies
of water molecules in the chemical structures of metal complexes.
some of the investigated metal complexes. The TGA data and their
assignments are summarized in (Table 5). The TGA data show that
the investigated complexes (1, 3, 9, 12, 13 and 16) display a weight
loss within the temperature range 32–241 ◦C assignable to the loss
of water of hydration [49,50]. The TGA curves also show the loss of
coordinated water molecules in complexes (1, 3, 12 and 13) within
the temperature range 159–267 ◦C [51,52]. The acetato complexes
(1, 9 and 12) also reveal the loss of coordinated acetate group within
the temperature range 218–414 ◦C [1]. The three complexes (3, 13
and 16) show a weight loss within temperature range 150–300 ◦C,
corresponding to the loss of coordinated chloride ions [28,29]. The
decomposition of the organic ligand takes place within tempera-
ture range 241–840 ◦C [19,53]. The thermal decomposition process
that not all molecules of hydrated water bind similarly within the
solid crystal [30,52].
structure of complexes as shown in Scheme 1.
3.2.5. Antibacterial activity
Minimum inhibitory concentrations (MICs) of metal complexes
of HL2 are given in Table 6. All tested metal complexes (10,
12, 14–16 and 19) are very weakly active against all tested
microorganisms, E. coli and K. pneumonia (as gram negative bac-
teria) and B. cereus and S. aureus (as gram positive bacteria) and
C. albicans (as fungs). The MIC values of these compounds are
of 10000.0–50000.0 g/mL when compared with the reference
antibacterial agent, ampicillin (12.5–50.0 g/mL) and antifungal
agent; clorimazole (25.0 g/mL) but complex (15) lacks any vir-
tually microbial activity towards all tested microorganisms.
[45] M.I. Ayad, A.S. El-Tabl, Polish J. Chem. 73 (1999) 263–269.
[46] C. Natarajan, P. Shanthi, P.A. Thappan, R. Murvgesan, Trans. Met. Chem. 17
(1992) 39–45.
[47] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1961) 149–155.
[48] B. Kebede, N. Retta, V.J.T. Raju, Y. Chebude, Trans. Met. Chem. 31 (2006) 19–26.
[49] M.S. Niasari, F. Davar, K. Saberyan, Polyhedron 29 (2010) 2149–2156.
[50] M.S. Masoud, A. El-Merghany, A.M. Ramadan, M.Y. Abd El-Kaway, J. Therm.
Anal. Calorim. 101 (2010) 839–847.
[51] M.S. Niasari, N. Mir, F. Davar, Polyhedron 28 (2009) 1111–1114.
[52] M.S. Masoud, S.A. AbouEl-Enein, A.M. Ramadan, A.S. Goher, J. Anal. Appl. Pyrol.
81 (2008) 45–51.
[53] M.S. Niasari, Polyhedron 28 (2009) 2321–2328.