E. Procházková et al.
Table 1. The calculated heteronuclear coupling constants J(H8-C2)
and J(H8-C6) in substituted 9- and 7-methylpurines
and signal assignment could be also the comparison of calcu-
lated and experimental chemical shifts.[20]
9-isomer
7-isomer
Acknowledgement
Entry
R2
R6
J(H8-C2) J(H8-C6) J(H8-C2) J(H8-C6)
We are grateful to the Grant Agency of Academy of Sciences of the
Czech Republic (Project KJB400550903) for supporting this work.
1
H
H
0.32
0.48
0.35
0.52
0.35
0.57
0.57
0.61
0.49
0.34
0.36
0.16
0.49
0.54
0.56
0.36
0.34
0.21
0.19
0.55
0.46
0.62
0.32
0.58
0.92
0.75
0.85
0.44
0.64
0.66
0.61
0.79
0.65
0.86
0.60
0.68
0.68
0.75
0.76
0.41
0.27
0.36
0.80
0.79
0.67
0.93
0.89
0.89
0.73
0.81
0.96
0.84
0.79
0.80
1.2
2
Cl
H
References
3
H
Cl
Cl
4
Cl
[1] H. Rosemeyer. Chem. Biodivers. 2004, 1, 361–401.
[2] T. Bartl, Z. Zacharová, P. Sečkářová, E. Kolehmainen, R. Marek. Eur. J.
Org. Chem. 2009, 1377–1383.
[3] I. Collins, J. J. Caldwell, 10.11 - Bicyclic 5–6 Systems: Purines, in Com-
prehensive Heterocyclic Chemistry III, vol. 10 (Eds: A. R. Katritzky, C. A.
Ramsden, E. F. V. Scriven, J. K. Taylor), Elsevier, Oxford, 2008 pp.
525–597.
[4] M. Legraverend, D. S. Grierson. Bioorg. Med. Chem. 2006, 14, 3987–4006.
[5] E. De Clercq, A. Holý, I. Rosenberg, T. Sakuma, J. Balzarini, P. C. Maudgal.
Nature 1986, 323, 464–467.
5
H
NH2
6
NH2
NH2
NH2
Cl
H
7
NH2
8
Cl
9
NH-CH3
OHa
OHa
OHa
10
11
12
13
14
15
NH2
OHa
H
1.1
1.1
[6] A. Holý. Curr. Pharm. Des. 2003, 9, 2567–2592.
Cl
OCH3
N(CH3)2
NH-CH3
0.73
0.74
0.86
[7] E. De Clercq, A. Holý. Nat. Rev. Drug Discovery 2005, 4, 928–940.
[8] C. Simons, Q. P. Wu, T. T. Htar. Curr. Top. Med. Chem. 2005, 5, 1191–1203.
[9] M. Kidwai, R. Venkataramanan, R. Mohan, P. Sapra. Curr. Med. Chem.
2002, 9, 1209–1228.
[10] N. R. Kode, S. Phadtare. Molecules 2011, 16, 5840–5860.
[11] J. N. Kim, K. F. Blount, I. Puskarz, J. Lim, K. H. Link, R. R. Breaker. ACS
Chem. Biol. 2009, 4, 915–927.
Cl
NH2
aKeto forms of the guanine, hypoxanthine and xanthine bases were
used in the calculations.
[12] S. Standara, K. Maliňáková, R. Marek, J. Marek, M. Hocek, J. Vaara,
M. Straka. Phys. Chem. Chem. Phys. 2010, 12, 5126–5139.
[13] R. Marek, J. Brus, J. Toušek, L. Kovacs, D. Hocková. Magn. Res. Chem.
2002, 40, 353–360.
[14] O. Tsikouris, T. Bartl, J. Tousek, N. Lougiakis, T. Tite, P. Marakos,
N. Pouli, E. Mikros, R. Marek. Magn. Reson. Chem. 2008, 46, 643–649.
[15] M. T. Chenon, R. J. Pugmire, D. M. Grant, R. P. Panzica, L. B. Townsend.
J. Am. Chem. Soc. 1975, 97, 4627–4636.
[16] J. Kongsted, K. Aidas, K. V. Mikkelsen. Phys. Chem. Chem. Phys. 2010,
12, 761–768.
[17] N. C. Gonnella, H. Nakanishi, J. B. Holtwick, D. S. Horowitz, K. Kanamori,
N. J. Leonard, J. D. Roberts. J. Am. Chem. Soc. 1983, 105, 2050–2055.
[18] M. Dračínský, P. Jansa, J. Chocholoušová, J. Vacek, S. Kovačková,
A. Holý. Eur. J. Org. Chem. 2010.
[19] M. Dračínský, P. Jansa, K. Ahonen, M. Buděšínský. Eur. J. Org. Chem.
2011, 1544–1551.
[20] E. Procházková, M. Šála, R. Nencka, M. Dračínský. Magn. Res. Chem.
2012 in press. DOI: 10.1002/mrc.2864.
[21] T. Dieckmann, J. Feigon. Curr. Opin. Struc. Biol. 1994, 4, 745–749.
[22] R. Marek, V. Sklenář. Annu. Rep. NMR Spectrosc. 2004, 54, 201–242.
[23] A. Holý, J. Günter, H. Dvořáková, M. Masojídková, G. Andrei, R. Snoeck,
J. Balzarini, E. De Clercq. J. Med. Chem. 1999, 42, 2064–2086.
[24] C. Dalby, C. Bleasdale, W. Clegg, M. R. J. Elsegood, B. T. Golding, R. J. Griffin.
Angew. Chem. Int. Ed. 1993, 32, 1696–1697.
excellently with the experimental ones (0.8 and 0.7 Hz). Cross-
peaks of equal intensity were observed in the HMBC spectrum
of this compound. Similarly, in the HMBC spectra of compounds
7, 9 and 10, both crosspeaks H8-C2 and H8-C6 were observed,
and their intensities were almost identical, which is in line with
the calculated coupling constant values 0.7–0.8 Hz for all the cou-
plings. In contrast to that the calculated value of the H8-C2
coupling constant (0.27 Hz) in compound 8 is much smaller than
the H8-C6 coupling constant (1.1 Hz), which is, indeed, mani-
fested in the HMBC spectrum by a missing H8-C2 crosspeak.
Based on a careful analysis of the calculated long-range cou-
pling constants, we can conclude that the value of H8-C2 cou-
pling depends primarily on the nature of the substituent in the
position 2. The following order of the coupling values depending
on the C-2 substituent was observed: H < Cl < NH2. Exceptions
from this rule are the keto forms of guanine, hypoxanthine and
xanthine, which have always very low H8-C2 coupling. Similarly,
the H8-C6 coupling value is dominated by the nature of the C-6
substituent, with the keto forms of guanine, hypoxanthine and xan-
thine having the highest values of the coupling. 7-methylisomers
always have both H8-C2 and H8-C6 coupling constants values
higher than the 9-methylisomers.
[25] L. Čechová, P. Jansa, M. Šála, M. Dračínský, A. Holý, Z. Janeba. Tetra-
hedron 2011, 67, 866–871.
[26] V. Kotek, N. Chudikova, T. Tobrman, D. Dvorak. Org. Lett. 2010, 12,
5724–5727.
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, X. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox,
Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
[28] A. D. Becke. J. Chem. Phys. 1993, 98, 5648–5652.
Conclusions
We have demonstrated both experimentally and by DFT calcula-
tions that the four- and five-bond heteronuclear J-couplings of
the hydrogen H-8 with carbon atoms C-6 and C-2 may be of a
comparable size. Depending on the substituents attached to
the purine skeleton, the values of the coupling constants can
change significantly. For proper structure determination and
signal assignment, care must be taken with this issue and one
cannot rely on small crosspeaks in the HMBC spectra, which can
be caused by both H8-C2 and H8-C6 interactions. The DFT calcu-
lated coupling constants were shown to agree very well with the
experimental data. An alternative for the structure determination
[29] C. T. Lee, W. T. Yang, R. G. Parr. Phys. Rev. B 1988, 37, 785–789.
[30] M. Dračínský, P. Bouř. J. Chem. Theory Comput. 2010, 6, 288–299.
[31] M. Dračínský, J. Kaminský, P. Bouř. J. Phys. Chem. B 2009, 113, 14698–14707.
[32] M. Dračínský, J. Kaminský, P. Bouř. J. Chem. Phys. 2009, 130, 094106.
wileyonlinelibrary.com/journal/mrc
Copyright © 2012 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2012, 50, 295–298