4
9. Vicentini, C. B.; Brandolini, V.; Guarneri, M.; Giori, P.; II
Farmaco 1992, 47, 1021-1034.
10. Fung-Tomc, J. C.; Huczko, E.; Minassian, B.; Bonner, D. P.;
Chemother 1998, 42, 313-318.
11. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.;
Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.;
Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford,
C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.;
Yagi, B. H. J. Med. Chem. 2000, 43, 953-970.
12. Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.;
Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagittani, Y. J. Med.
Chem. 1996, 39, 3019-3029.
13. (a) Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.;
DiMarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.;
McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem. 1995, 38,
119-129 (b) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D.
M.; Moreland, S.; Hedbrg, A.; O’Reilly, B. C. J. Med. Chem.
1991, 34, 806-811. (c) Grover, G. J.; Dzwomczyk, S.; Mc Mullen,
D. M.; Normandin, D. E.; Parham, C. S.; Sleph, P. G.; Moreland,
S. J. Cardiovasc. Pharmacol. 1995, 26, 289-294.
14. (a) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron
1997, 53, 2803-2816. (b) Atwal, K. S.; Rovnyak, G. C.; Kimball,
S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.; Gougoutas, J.
Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med. Chem.
1990, 33, 2629-2635. (c) Atwal, K. S.; Rovnyak, G. C.; O’Reilly,
B. C.; Schwartz, J. J. Org. Chem. 1989, 54, 5898-5970. (d) Mayer,
T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S.
L.; Mitchison, T. J. Science 1999, 286, 971-974.
completion of the reaction, the reaction mixture was poured into
ice cold water. The solid product was filtered and dried under
vacuum to afford 2-{[N-benzyl-(N-1-azidopropan-2-one)-N-tert-
butyl-2-(2- chlorophenyl)]} acetamide 2a (0.335g, 81%) as white
solid: IR (KBr) (νmax, cm-1): 3304, 2100, 1685, 1640, 1552. 1H-
NMR (CDCl3, 500MHz) δH (ppm): 1.25 (s, 9H), 1.62 (s, 2H), 4.58
(s, 2H), 6.38 (s, 1H, -CH), 6.95-7.26 (m, 9H), 7.53 (s, 1H). 13C-
NMR (DMSO- (d6), 125MHz) δC (ppm): 31.1, 42.7, 48.3, 51.7,
52.2, 126.8, 127.2, 128.4, 129.6, 129.7, 130.1, 132.5, 134.7, 137.7,
137.9, 167.0, 167.2. EI-MS: 414.4 (M+).
19. Typical procedure for the synthesis of 1, 4-disubstituted triazolyl
DHPMs with skeletal α-amino acid residue 3a: An equi-molar
amount of 2a (69 mg, 0.2 mmol) and 1a (50 mg, 0.2mmol) are
dissolved in minimum amount of DMSO. To this, 2 ml of tert-
BuOH, 1ml of water, CuSO4.5H2O (11 mg) and sodium ascorbate
(50 mg) are added and stirred in room temperature for 12 h. After
12h, the mixture was poured in to cold water. The precipitated
solid was collected and washed with water and dried. The dried
product was washed with diethyl ether (3x 5ml) to afford 3a
(0.138g, 83%) as white solid. IR (KBr) (νmax, cm-1): 3331, 3296,
3225, 1687, 1658, 1604, 1549, 1316, 1176; 1H-NMR (DMSO-(d6),
400MHz) δH (ppm): 1.29 (s, 9H), 2.24 (s, 3H), 3.52 (s, 3H), 4.46
(s, 2H), 4.69 (s, 2H), 5.12 (s, 2H), 5.48 (s, 1H), 6.29 (s, 1H), 6.86-
7.88 (m, 14H, ArH, -CH), 8.07 (s, 1H), 9.18 (s, 1H), 9.87 (s, 1H).
13C-NMR (DMSO-(d6), 100MHz) δC (ppm): 17.4, 31.8, 46.2, 48.1,
49.3, 52.0, 56.6, 72.3, 102.4, 113.2, 121.2, 127.2, 128.2, 128.4,
129.0, 129.1, 129.7, 129.8, 130.1, 132.0, 132.1, 132.2, 132.5,
133.2, 135.1, 137.7, 142.0, 148.2, 151.1, 158.8, 167.5, 168.6,
169.9. EI-MS: 714.0 (M+).
15. (a) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879-888. (b) Kappe,
C. O. Tetrahedron, 1993, 49, 6937-6963. (c) Kappe, C. O.; Eur.
J. Med. Chem. 2000, 35, 1043-1052.
20. (a) Shinu, V. S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D.
Tetrahedron Lett. 2009, 50, 4838-4842; (b) Shinu, V. S.;
Pramitha, P.; Bahulayan, D. Tetrahedron Lett. 2011, 52, 3110-
315.
16. Typical experimental procedure for the synthesis of alkynyl
pyrimidinone 1a: A mixture of propargylated aromatic aldehyde
(300 mg, 1mmol), methylacetoacetate (183 mg, 1 mmol) and urea
21. Typical procedure for the synthesis of β-amido ketone azide 4a: A
mixture of 4-chloroacetophenone (140 mg, 1 mmol), 2-chloro
benzaldehyde (154mg, 1mmol), and 3-bromopropionitrile (133mg,
1mmol) in acetonitrile (8 ml) was stirred in the presence of 5
mol% CuSO4 at room temperature for 8h. After completion of the
reaction as indicated by TLC, the reaction mixture was poured
into ice cold water and extracted with CH2Cl2 (15 ml).
Evaporation of the solvent followed by purification on silica gel
(100-200 mesh), ethyl acetate/hexane (3:1) afford 3-bromo-N-[1-
(2-chlorophenyl)-3-(4-chlorophenyl)-3-oxopropyl] propanamide.
The resulted bromide (426 mg, 1 mmol), K2CO3 (414 mg, 3
o
(142 mg, 1. 5 mmol) were stirred and refluxed at 80 C for 1h in
an oil bath. The completion of reaction was monitored by TLC.
After cooling, the reaction mixture was poured into crushed ice.
The separated solid was filtered and dried in vacuum to afford the
crude product. Recrystallization from hot ethanol provides the
analytically pure product 1a (0. 243g, 81%) as white solid. Mp.
120-122 oC. IR (KBr) (νmax, cm-1): 3277, 3247, 3115, 2115,
1716, 1651, 1608, 1304, 1175. 1H-NMR (DMSO-(d6) 400MHz) δH
(ppm): 2.24 (s, 3H), 3.34 (s, 1H), 3.53 (s, 3H), 4.75 (s, 2H), 5.09
(s, 1H), 6.91-6.93 (m, 2H), 7.14-7.16 (m, 2H), 7.68 (s, 1H), 9.18
(s, 1H). 13C-NMR (DMSO-(d6), 100MHz) δC (ppm): 17.8, 50.6,
53.1, 55.6, 78.1, 79.2, 101.7, 114.2, 114.6, 127.3, 127.9, 137.5,
145.4, 152.1, 167.4. EI-MS: 301.1 (M+).
mmol), NaN3 (65 mg,
1
mmol) were dissolved in
dimethylacetamide and stirred for 6-8h. After completion, the
reaction mixture was poured into ice cold water and the precipitate
was filtered, dried under vacuum to afford the azide 4a (.0.332g,
86%) as white solid. IR (KBr) (νmax, cm-1): 3296, 2107, 1685,
17. (a) Ugi, I.; Lohberger, S.; Karl, R.; In Comprehensive Organic
Synthesis. (b) Trost, B. M.; Flemming, I.; Heathcock, H. Eds.
Pergamon; New York 1991, 2, 1083-1109. (c) Ugi, I.; Angew.
Chem. Int. Ed. Engl. 1982, 21, 810-819. (d) Keating, T. A.;
Armstrong, R. W.; J. Org. Chem. 1998, 63, 867-871.
1
1645, 1588. H-NMR (CDCl3, 500MHz) δH (ppm): 1.73 (t, 2H),
2.45 (t, 2H), 2.67 (dd, 1H), 3.38 (dd, 1H), 5.53 (m, 1H), 6.89-7.43
(m, 8H, ArH), 7.83 (d, J=7.5Hz, 1H). 13C-NMR (CDCl3, 125MHz)
δC (ppm): 35.6, 46.4, 48.2, 77.3, 128.3, 128.4, 128.9, 129.0, 129.6,
129.9, 130.3, 132.4, 134.7, 137.6, 140.2, 141.1, 169.1, 197.5. EI-
MS: 391.0 (M+).
18. Typical procedure for the synthesis of α-amino acid type azide 2a:
An equimolar amount of 2-chlorobenzaldehyde (140 mg, 1mmol),
and benzyl amine (107 mg, 1mmol), are taken in dichloromethane
(8 ml), and stirred at room temperature for 20 min. to form the
Schiff-base. To this, one equiv. of tert- butyl isocyanide (94 mg, 1
mmol) and chloroacetic acid (83 mg, 1 mmol) were added and
stirring was continued at room temperature. The reaction was
monitored by TLC and found to complete after 72h. The solvent
was evaporated under vacuum and the residue was washed with
peteroleum ether (5x15ml) to afford the chloro derivative of the
Ugi product. In a subsequent step, the Ugi chloride (407 mg, 1
mmol), K2CO3 (414mg, 3 mmol) and NaN3 (65 mg, 1 mmol) are
stirred at room temperature for 4h in dimethyl acetamide. After
22. Cornec, A.-S.; Baudequin, C.; Fiol-Petit, C.; Plé, N.; Dupas, G.;
Ramondenc, Y. Eur. J. Org. Chem. 2013, 1908-1915.
Supplementary Material: Copies of NMR, FT-IR and Mass
spectrum of new compounds.