Organic Letters
Letter
the O-terminal, making it easier to control the syn selectivity
(up to 70:1, 2c) over the anti selectivity (only up to 1:1.7, 4b)
with the alcohol additives. This is further supported by the
equilibrium experiment that showed that a higher dr for anti
product (1:3.9 dr for 2a) could be achieved. The thermody-
namic stability could be explained by the crystal structure of
anti-2k, in which the B atom and the O atom of the carbonyl
group have a relatively short distance (2.7 Å). The aryl group
and the methyl group are aligned on the trans positions, which
is thermodynamically favorable. This equilibrium reaction
provides a facile method for the preparation of anti products.
When the steric hindrance on the α-position was increased (for
example, comparing 1n to 1a) or the steric hindrance on the O-
terminal side of the enolate was decreased (for example,
comparing 3a to 3d), pathway b would be more favored; this
significantly decreased the diastereoselectivity for syn products.
The influence of the additives on the diastereoselectivities for
1n and 3b was investigated, and the results were in agreement
By simple oxidation with NaBO3, the borated product syn-2a
(92% ee, 50:1 dr) could be transformed to the chiral alcohol
syn-12 with slightly higher ee (94% ee) and lower dr (14:1 dr).
This was followed by stereospecific reduction, and the
enantioenriched diol epimers (13 and 14) with three
stereogenic centers could be efficiently and stereodivergently
obtained (see Scheme S2). For example, Bu4NBH4 in acetic
acid8a gave anti diol 13 in about 80% yield (16:1 dr), while
DIBAL8b gave syn diol 14 in 95% yield (19:1 dr).
In summary, we have developed a strategy of obtaining
enantioenriched products bearing two adjacent stereogenic
centers with various functional groups by an enantio- and
diastereoselective boron conjugate addition to α-substituted
α,β-unsaturated compounds using a copper catalyst. In fact, the
diastereoisomers of the products could be stereodivergently
synthesized by changing the additives or simple transformation
with base. The influence of steric bulk and pKa of the additives
on the diastereoselectivity was investigated. The boron
conjugate addition product was used for the synthesis of
epimers of 1,3-diol, which contain three stereogenic centers.
We expect the enantio- and diastereoselective control of the
conjugate addition product of α-substituted α,β-unsaturated
compounds could be applied to broader substrate scope and
more reactions, as the enantioenriched products with various
functional groups could be synthesized concisely.
ACKNOWLEDGMENTS
■
We gratefully acknowledge financial support from the NIH
(R33DA031860) and the Robert A. Welch Foundation (D-
1361). We thank Dr. Daniel Unruh (Texas Tech University)
for the X-ray diffraction analysis. We thank Dr. Patrick
Commins (New York University Abu Dhabi) for critical
reading of the manuscript and helpful comments.
REFERENCES
■
(1) (a) Corey, E. J.; Kurti, L. Enantioselective Chemical Synthesis:
̈
Methods, Logic and Practice; Direct Book Publishing: Dallas, 2010.
(b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive
Asymmetric Catalysis; Springer: New York, 1999; Vols. I−III, Suppl.
I−II,.
(2) For selected examples of stereodivergent controls, see:
(a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science
2013, 340, 1065−1068. (b) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.;
Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362−
14363. (c) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 3779−3784. (d) Zbieg, J. R.; Yamaguchi, E.; McInturff, E.
L.; Krische, M. J. Science 2012, 336, 324−327. (e) Luparia, M.;
́
Oliveira, M. T.; Audisio, D.; Frebault, F.; Goddard, R.; Maulide, N.
Angew. Chem., Int. Ed. 2011, 50, 12631−12635. (f) Shi, S.-L.; Wong, Z.
L.; Buchwald, S. L. Nature 2016, 532, 353−356.
(3) For reviews, see: (a) Schiffner, A.; Muther, K.; Oestreich, M.
̈
Angew. Chem., Int. Ed. 2010, 49, 1194−1196. (b) Cid, J.; Gulyas, H.;
Carbo, J. J.; Fernandez, E. Chem. Soc. Rev. 2012, 41, 3558−3570. For
selected recent examples, see: (c) Palau-Lluch, G.; Fernandez, E. Adv.
Synth. Catal. 2013, 355, 1464−1470. (d) Wu, H.; Radomkit, S.;
O’Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277−
8285. (e) Luo, Y.; Roy, I. D.; Madec, A. G. E.; Lam, H. W. Angew.
Chem., Int. Ed. 2014, 53, 4186−4190. (f) Kobayashi, S.; Xu, P.; Endo,
T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed. 2012, 51, 12763−
̌
12766. (g) Stavber, G.; Casar, Z. Appl. Organomet. Chem. 2013, 27,
159−165.
(4) For selected examples, see: (a) Meng, F.; McGrath, K. P.;
Hoveyda, A. H. Nature 2014, 513, 367−374. (b) Nave, S.; Sonawane,
R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132,
17096−17098. (c) Ohmura, T.; Awano, T.; Suginome, M. J. Am.
Chem. Soc. 2010, 132, 13191−13193. (d) Park, J. K.; Lackey, H. H.;
Ondrusek, B. A.; McQuade, D. T. J. Am. Chem. Soc. 2011, 133, 2410−
2413. (e) Tortosa, M. Angew. Chem., Int. Ed. 2011, 50, 3950−3953.
(f) Xie, J.-B.; Luo, J.; Winn, T. R.; Cordes, D. B.; Li, G. Beilstein J. Org.
Chem. 2014, 10, 746−751. (g) Yamamoto, Y.; Asao, N. Chem. Rev.
1993, 93, 2207−2293. (h) Imao, D.; Glasspoole, B. W.; Laberge, V. S.;
Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024−5025. (i) Bonet,
A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem.
2014, 6, 584−589. (j) Matteson, D. S. Stereodirected Synthesis with
Organoboranes; Springer: Berlin, 1995; pp 48−92.
(5) (a) Lillo, V.; Prieto, A.; Bonet, A.; Mar, D.-R. M.; Ramirez, J.;
Perez, P. J.; Fernandez, E. Organometallics 2009, 28, 659−662. (b) He,
Z.-T.; Zhao, Y.-S.; Tian, P.; Wang, C.-C.; Dong, H.-Q.; Lin, G.-Q. Org.
Lett. 2014, 16, 1426−1429.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(6) Xie, J.-B.; Lin, S.; Luo, J.; Wu, J.; Winn, T. R.; Li, G. Org. Chem.
Front. 2015, 2, 42−46.
(7) For the dimerization of Cu(I) complex, see: (a) Harutyunyan, S.
R.; Lop
́
ez, F.; Browne, W. R.; Correa, A.; Pena, D.; Badorrey, R.;
̃
Experimental details and data (PDF)
Meetsma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2006,
X-ray crystallographic data for anti-2k (CIF)
128, 9103−9118. (b) Lopez, F.; Harutyunyan, S. R.; Meetsma, A.;
́
Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 2752−
2756.
AUTHOR INFORMATION
(8) (a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem.
Soc. 1988, 110, 3560−3578. (b) Suzuki, K.; Shimazaki, M.;
Tsuchihashi, G.-I. Tetrahedron Lett. 1986, 27, 6233−6236.
■
Corresponding Author
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX