1364
J . Org. Chem. 1998, 63, 1364-1365
Communications
Sch em e 1. Syn th esis of (R)-2
A High ly Gen er a l Ca ta lyst for th e
En a n tioselective Rea ction of Ald eh yd es w ith
Dieth ylzin c
Wei-Sheng Huang, Qiao-Sheng Hu, and Lin Pu*
Department of Chemistry, University of Virginia,
Charlottesville, Virginia 22901
discovery that (R)-2 is not only a highly enantioselective
catalyst for the reaction of aldehydes with diethylzinc but
also the most general one for different types of aldehydes.
Received October 29, 1997
The asymmetric reaction of alkylzinc complexes with
aldehydes has been demonstrated as a very useful method
for the synthesis of optically active alcohols.1 Since the first
report of a highly enantioselective amino alcohol catalyst
by Noyori et al. in 1986,2 extensive studies have been carried
out in this area and many good catalysts have been
developed.1-18 However, the general applicability of these
catalysts is still limited because each of these catalysts is
good for certain types of aldehyde substrates only. Different
catalysts are usually required for the preparation of different
chiral alcohols by using this method. Therefore, the search
for the ultimate catalyst in this system continues.
Recently, we have reported a highly enantioselective
polymeric chiral catalyst (R)-1 for the addition of diethylzinc
to certain aldehydes.19 This polymer catalyzes the reaction
of aromatic aldehydes in up to 94% enantiomeric excess (ee)
and the reaction of aliphatic aldehydes in up to 83% ee. To
further investigate the catalytic activity and stereoselectivity
of this novel rigid and sterically regular polymeric chiral
catalyst, we have synthesized (R)-2 as the monomeric model
compound of (R)-1. In this paper, we report our exciting
(1) For reviews, see: (a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (b)
Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
(2) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J . Am. Chem. Soc. 1986,
108, 6071.
(3) (a) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J . Am. Chem. Soc. 1987,
109, 7111. (b) Soai, K.; Niwa, S. Chem. Lett. 1989, 481.
(4) (a) Soai, K.; Yokoyama, S.; Ebihara, K.; Hayasaka, T. J . Chem. Soc.
Chem. Commun. 1987, 1690. (b) Soai, K.; Yokoyama, S.; Hayasaka, T. J .
Org. Chem. 1991, 56, 4264.
A binaphthyl molecule (R)-3 is synthesized in two steps
from the optically pure (R)-1,1′-bi-2-naphthol20 by protection
of the hydroxyls with methoxymethyl groups21 and then
iodonation at the 3,3′-positions.22 The Suzuki coupling of
(R)-3 with an arylboronic acid 4 followed by hydrolysis gives
(R)-2 (Scheme 1). The specific optical rotation of (R)-2 is
[R]D ) 95.0 (c ) 0.962, THF).
(5) Watanabe, M.; Araki, S.; Butsugan, Y.; Uemura, M. J . Org. Chem.
1991, 56, 2218.
When this molecule is used to catalyze the reaction of
benzaldehyde with diethylzinc, the corresponding alcohol is
produced in over 99% ee. We have therefore explored the
generality of this catalyst. We are very pleased to discover
that (R)-2 exhibits high enantioselectivity for many different
substrates including para-, ortho-, or meta-substituted
aromatic aldehydes, linear or branched aliphatic aldehydes,
and aryl or alkyl substituted R,â-unsaturated aldehydes.
These results are summarized in Table 1. All of the
reactions are carried out in toluene solution at 0 °C using 5
mol % (R)-2 unless otherwise indicated. The racemic alcohol
products are also prepared and their HPLC or GC data are
compared with those of the optically active alcohol products
in order to determine the enantioselectivity of (R)-2. The
absolute configuration of all of the products is R as deter-
mined by comparing their optical rotation values or GC data
with the literature results.1-19 (R)-2 can be recovered by
column chromatography on silica gel with no change of the
structure or activity.
(6) J oshi, N. N.; Srebnik, M.; Brown, H. C. Tetrahedron Lett. 1989, 30,
5551.
(7) (a) Ishizaki, M.; Fujita, K.-i.; Shimamoto, M.; Hoshino, O. Tetrahe-
dron: Asymmetry 1994, 5, 411. (b) Bolm, C.; Schlingloff, G.; Hayms, K.
Chem. Ber. 1992, 125, 1191.
(8) (a) Kitajima, H.; Ito, K.; Katsuki, T. Chem. Lett. 1996, 343. (b)
Kitajima, H.; Ito, K.; Aoki, Y.; Katsuki, T. Bull. Chem. Soc. J pn. 1997, 70,
207.
(9) J in, M.-J .; Ahn, S.-J .; Lee, K.-S. Tetrahedron Lett. 1996, 37, 8767.
(10) Kang, J .; Lee, J . W.; Kim, J . I. J . Chem. Soc. Chem. Commun. 1994,
2009.
(11) Kang, J .; Kim, D. S.; Kim, J . I. Synlett 1994, 842.
(12) Prasad, K. R. K.; J oshi, N. N. J . Org. Chem. 1997, 62, 3770.
(13) Chelucci, G.; Conti, S.; Falorni, M.; Giacomelli, G. Tetrahedron 1991,
47, 8251.
(14) Wirth, T.; Kulicke, K. J .; Fragale, G. Helv. Chim. Acta 1996, 79,
1957.
(15) Rijnberg, E.; Hovestad, N. J .; Kleij, A. W.; J astrzebski, J . T. B. H.;
Boersma, J .; J anssen, M. D.; Spek, A. L.; van Koten, G. Organometallics
1997, 16, 2847.
(16) (a) Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989,
30, 1657. (b) Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.;
Ohno, M. Tetrahedron Lett. 1989, 30, 7095.
(17) (a) Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30,
99. (b) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron
1994, 50, 4363.
(18) Qiu, J .; Guo, C.; Zhang, X. J . Org. Chem. 1997, 62, 2665.
(19) (a) Huang, W.-S.; Hu, Q.-S.; Zheng, X.-F.; Anderson, J .; Pu, L. J .
Am. Chem. Soc. 1997, 119, 4313. (b) Hu, Q.-S.; Huang, W.-S.; Pu, L. J . Am.
Chem. Soc. 1997, 119, 12454.
(20) Hu, Q.-S.; Vitharana, D.; Pu, L. Tetrahedron: Asymmetry 1995, 6,
2123.
(21) Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett. 1995, 1113.
(22) Cox, P. J .; Wang, W.; Snieckus, V. Tetrahedron Lett. 1992, 17, 2253.
S0022-3263(97)01985-3 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/14/1998