Journal of the American Chemical Society
Communication
obtained; see the SI for details). Following cross-metathesis,18
NaN3 displacement gave an interconverting mixture of allylic
azides 26a−d in 71% yield. The best results for the
isomerization/Schmidt reaction sequence were obtained using
TiCl4 treatment, which afforded a separable mixture of lactams
27a and 27b in a ca. 10:1 ratio and 68% yield. The preference
for the former is presumed to result from the placement
of the vinyl group in a pseudoequatorial orientation in 27a
(see the ball-and-stick model shown in the scheme). Finally,
hydroboration/oxidation gave Kibayashi’s pinnaic acid inter-
mediate 2815 in 83% yield.
In conclusion, we have demonstrated that it is possible to
combine allylic azide rearrangement and the intramolecular
Schmidt reaction to afford substituted lactams stereoselectively.
We are currently carrying out experimental and theoretical
studies to explore further the scope and applications of this
combined reaction sequence.
S.; DeSev
̀
e, H.; Spino, C. J. Org. Chem. 2008, 73, 6239. (f) Cardillo, G.;
Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Piccinelli, F.; Tolomelli,
A. Org. Lett. 2005, 7, 533. (g) Feldman, A. K.; Colasson, B.; Sharpless,
K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 13444. (h) Cakmak,
M.; Mayer, P.; Trauner, D. Nat. Chem. 2011, 3, 543.
(5) Craig, D.; Harvey, J. W.; O’Brien, A. G.; White, A. J. P. Org.
Biomol. Chem. 2011, 9, 7057.
(6) Hewlett, N. D.; Aube,
2004, 69, 3439.
́
J.; Radkiewicz-Poutsma, J. L. J. Org. Chem.
(7) Casadei, M. A.; Galli, C.; Mandolini, L. J. Am. Chem. Soc. 1984,
106, 1051.
(8) Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959.
(b) Buchanan, G. W. Can. J. Chem. 1982, 60, 2908.
(9) Details of preparations and structure identifications can be found
in the Supporting Information (SI).
(10) Szostak, M.; Yao, L.; Aube, J. J. Org. Chem. 2010, 75, 1235.
́
(11) (a) All of the structures were calculated at the B3LYP/
6-31G(d,p)[SDD for Sn] level in DCM (CPCM with UA0 radii); see
the SI for details. (b) Gutierrez, O.; Aube,
Chem. 2012, 77, 640.
(12) Ashby, E. C.; Laemmle, J. T. Chem. Rev. 1975, 75, 521.
(13) Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.;
Uemura, D. Tetrahedron Lett. 1996, 37, 3871.
(14) For a review of synthetic work torward pinnacid acid, see:
(a) Clive, D. L. J.; Yu, M.; Wang, J.; Yeh, C. S. C.; Kang, S. Chem. Rev.
2005, 105, 4483. Recent total syntheses: (b) Christie, H. S.; Heathcock,
C. H. Pro. Natl. Acad, Sci. USA 2004, 101, 12079. (c) Xu, S.; Arimoto,
H.; Uemura, D. Angew. Chem. Int. Ed. 2007, 46, 5746. (d) Wu, H.;
Zhang, H.; Zhao, G. Tetrahedron 2007, 63, 6454. Recent synthetic
approaches and formal syntheses: (e) Matsumura, Y.; Aoyagi, S.;
Kibayashi, C. Org. Lett. 2004, 6, 965. (f) Arini, L. G.; Szeto, P.;
Hughes, D. L.; Stockman, R. A. Tetrahedron Lett. 2004, 45, 8371.
(g) Huxford, T.; Simpkins, N. S. Synlett 2004, 2295. (h) Clive, D. L. J.;
Wang, J.; Yu, M. Tetrahedron Lett. 2005, 46, 2853. (i) Roulland, E.;
Chiaroni, A.; Husson, H.-P. Tetrahedron Lett. 2005, 46, 4065.
(j) Zhang, H.-L.; Zhao, G.; Ding, Y.; Wu, B. J. Org. Chem. 2005, 70,
4954. (k) Andrade, R. B. ; Martin, S. F. Org. Lett. 2005, 7, 5733.
(l) Yang, S.-H.; Caprio, V. Synlett 2007, 1219. (m) Yang, S.-H.; Clark,
G. R.; Caprio, V. Org. Biomol. Chem. 2009, 7, 2981. (n) Stevenson, B.;
Lewis, W.; Dowden, J. Synlett 2010, 672. (o) Ferrari, F. D.; Ledgard,
A. J.; Marquez, R. Tetrahedron 2011, 67, 4988.
́
J.; Tantillo, D. J. J. Org.
ASSOCIATED CONTENT
■
S
* Supporting Information
1
Experimental procedures, characterization data, copies of H
and 13C NMR spectra of all new compounds, and details of the
DFT calculations. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Michal Szostak, Thomas C. Coombs, and Erik
Fenster for helpful discussions. J.A. acknowledges the financial
support of the National Institute of General Medical Sciences
(GM-049093). D.J.T. and O.G. acknowledge support from the
National Science Foundation (CHE030089, Pittsburgh Super-
computer Center).
(15) Matsumura, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2004, 6, 965.
(16) Snider, B. B.; Vo, N. H.; Foxman, B. M. J. Org. Chem. 1993, 58,
7228.
(17) (a) Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L.;
Declercq, J. P.; Germain, G.; Van Meerssche, M. J. Am. Chem. Soc.
1982, 104, 2920. (b) Depre, D.; Chen, L.-Y.; Ghosez, L. Tetrahedron
2003, 59, 6797.
(18) Bandini, M.; Cozzi, P. G.; Licciulli, S.; Umani-Ronchi, A.
Synthesis 2004, 409.
REFERENCES
■
(1) (a) Aube,
(b) Milligan, G. L.; Mossman, C. J.; Aube,
́
J.; Milligan, G. L. J. Am. Chem. Soc. 1991, 113, 8965.
J. J. Am. Chem. Soc. 1995,
́
117, 10449. For reviews, see: (c) Lang, S.; Murphy, J. A. Chem. Soc.
Rev. 2006, 35, 146. (d) Grecian, S.; Aube, J. Organic Azides: Syntheses
and Applications; Brase, S., Banert, K., Eds.; John Wiley and Sons:
́
̈
Chichester, U.K., 2009, pp 191−237.
(2) For a review, see: (a) Nyfeler, E.; Renaud, P. Chimia 2006, 60,
276. For some examples of total syntheses using the intramolecular
Schmidt reaction, see: (b) Reddy, P. G.; Varghese, B.; Baskaran, S. Org.
Lett. 2003, 5, 583. (c) Wrobleski, A.; Sahasrabudhe, K.; Aube,
Chem. Soc. 2002, 124, 9974. (d) Zeng, Y.; Aube, J. J. Am. Chem. Soc.
2005, 127, 15712. (e) Ghosh, P.; Judd, W. R.; Ribelin, T.; Aube, J. Org.
Lett. 2009, 11, 4140. (f) Meyer, A. M.; Katz, C. E.; Li, S.; Velde, D. V.;
Aube, J. Org. Lett. 2010, 12, 1244. (g) Chen, Z.-H.; Chen, Z.-M.;
́
J. J. Am.
́
́
́
Zhang, Y.-Q.; Tu, Y.-Q.; Zhang, F.-M. J. Org. Chem. 2011, 76, 10173.
(3) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960,
82, 5956.
(4) For recent examples of allylic azides in synthesis, see:
(a) Klepper, F.; Jahn, E.-M.; Hickmann, V.; Craell, T. Angew. Chem.,
Int. Ed. 2007, 46, 2325. (b) Takasu, H.; Tsuji, Y.; Sajiki, H.; Hitota, K.
Tetrahedron 2005, 61, 11027. (c) Chang, Y.-K.; Lo, H.-J.; Yan, T.-H.
Org. Lett. 2009, 11, 4278. (d) Gagnon, D.; Lauzon, S.; Godbout, C.;
Spino, C. Org. Lett. 2005, 7, 4769. (e) Lauson, S.; Tremblay, F.;
Gagnnon, D.; Godbout, C.; Chabot, C.; Mercier-Shanks, C.; Perreault,
6531
dx.doi.org/10.1021/ja300369c | J. Am. Chem. Soc. 2012, 134, 6528−6531