LETTER
Synthetic Protocols of 4-Quinolones and 1,8-Naphthyridones
451
(8) (a) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.;
In summary, we have developed new synthetic methods
for the preparation of 1-aryl-2-substituted 4-oxoquinoline
and 4-oxo-1,8-naphthyridine derivatives via two key in-
termediates, 1-aryl-2-formyl-4-oxoquinoline prepared by
oxidation of the C-2 methyl group in 1-aryl-2-methyl-4-
oxoquinoline with selenium dioxide and 1-aryl-2-methyl-
sulfonyl-4-oxo-1,8-naphthyridine prepared by improving
Rudorf’s method.18,19 These intermediates were useful
synthons for the modification at the C-2 functional group
of 4-oxoquinolines and 4-oxo-1,8-naphthyridines. We
transformed these useful synthons (3 and 10b) into other
1-aryl-2-substituted 4-oxoquinoline and 4-oxo-1,8-naph-
thyridine derivatives. We have also developed a method
of synthesizing novel 1-aryl-3-fluoro-4-oxoquinoline de-
rivatives by fluorocyclization of N-arylenaminone 14
with Selectfluor® and potassium carbonate in DMF in a
one-pot procedure.20 These synthetic methods could be
applied to both 4-oxoquinoline and 4-oxo-1,8-naphthyri-
dine derivatives.
Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609.
(b) Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org.
Chem. 2007, 72, 7968.
(9) (a) Sosnovskikh, V. Y.; Usachev, B. I.; Sevenard, D. V.;
Röschenthaler, G.-V. J. Fluorine Chem. 2005, 126, 779.
(b) Usachev, B. I.; Sosnovskikh, V. Y. J. Fluorine Chem.
2004, 125, 1393. (c) López, S. E.; Rebollo, O.; Salazar, J.;
Charris, J. E.; Yánez, C. J. Fluorine Chem. 2003, 120, 71.
(d) Kim, D. H. J. Heterocycl. Chem. 1981, 18, 1393.
(e) Friary, R. J.; Seidl, V.; Schwerdt, J. H.; Cohen, M. P.;
Hou, D.; Nafissi, M. Tetrahedron 1993, 49, 7169.
(10) Bernini, R.; Cacchi, S.; Fabrizi, G.; Sferrazza, A. Synthesis
2009, 1209.
(11) Zhao, T.; Xu, B. Org. Lett. 2010, 12, 212.
(12) Radl, S.; Obadalova, I. Collect. Czech. Chem. Commun.
2004, 69, 822.
(13) Analytical and Spectral Data of N-Arylenaminone 5:
pink solid; mp 112–113 °C. 1H NMR (400 MHz, CDCl3):
d = 7.75 (dd, J = 8.3, 8.0 Hz, 1 H), 7.36 (dd, J = 8.3, 1.7 Hz,
1 H), 7.29 (dd, J = 10.4, 1.7 Hz, 1 H), 7.22 (ddd, J = 8.8, 8.5,
5.8 Hz, 1 H), 6.88–6.98 (m, 2 H), 5.89 (d, J = 2.2 Hz, 1 H),
2.02 (s, 3 H). 13C NMR (100 MHz, CDCl3): d = 184.6 (d,
J = 4.1 Hz), 163.8, 161.1 (dd, J = 249.6, 10.8 Hz), 160.1 (d,
J = 256.2 Hz), 157.0 (dd, J = 250.4, 12.4 Hz), 131.7 (d, J =
3.3 Hz), 128.5 (d, J = 9.1 Hz), 127.7 (d, J = 3.3 Hz), 127.2
(d, J = 13.2 Hz), 125.1 (d, J = 9.9 Hz), 122.6 (dd, J = 13.2,
4.1 Hz), 119.8 (d, J = 27.2 Hz), 111.6 (dd, J = 22.3, 4.1 Hz),
104.9 (dd, J = 26.0, 24.4 Hz), 98.6 (d, J = 10.7 Hz), 19.8 (d,
J = 2.5 Hz). IR (neat): 1590, 1568, 1541, 1433, 1395, 1318,
1304, 1283, 1094, 882, 857, 778 cm–1. HRMS (DART):
m/z [M + H]+ calcd for C16H12BrF3NO: 370.00544; found:
370.00546.
References and Notes
(1) For reviews, see: (a) Mitscher, L. A. Chem. Rev. 2005, 105,
559. (b) Andriole, V. T. The Quinolones, 3rd ed.; Academic
Press: San Diego, 2000.
(2) (a) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Nakanishi,
Y.; Nampoothiri, P.; Hamel, E.; Brossi, A.; Lee, K.-H.
Bioorg. Med. Chem. Lett. 2003, 13, 2891. (b) Tsuzuki, Y.;
Tomita, K.; Shibamori, K.; Sato, Y.; Kashimoto, S.; Chiba,
K. J. Med. Chem. 2004, 47, 2097.
(14) Rudorf, W.-D.; Schierhorn, A.; Augustin, M. Tetrahedron
1979, 35, 551.
(3) (a) Lucero, B. d’A.; Gomes, C. R. B. V.; de Souza, T. M. L.;
Ferreira, V. F. Bioorg. Med. Chem. Lett. 2006, 16, 1010.
(b) Moyer, M. P.; Weber, F. H.; Gross, J. L. J. Med. Chem.
1992, 35, 4595. (c) Santo, R. D.; Costi, R.; Roux, A.; Artico,
M.; Lavecchia, A.; Marinelli, L.; Novellino, E.; Palmisano,
L.; Andreotti, M.; Amici, R.; Galluzzo, C. M.; Nencioni, L.;
Palamara, A. T.; Pommier, Y.; Marchand, C. J. Med. Chem.
2006, 49, 1939. (d) Sato, M.; Motomura, T.; Aramaki, H.;
Matsuda, T.; Yamashita, M.; Ito, Y.; Kawakami, H.;
Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Ikeda, S.;
Kodama, E.; Matsuoka, M.; Shinkai, H. J. Med. Chem. 2006,
49, 1506. (e) Massari, S.; Daelemans, D.; Barreca, M. L.;
Knezevich, A.; Sabatini, S.; Cecchetti, V.; Marcello, A.;
Pannecouque, C.; Tabarrini, O. J. Med. Chem. 2010, 53, 641.
(4) (a) These three compounds having a substituent on the C-2
or C-3 position in Figure 1 exhibited potent anti-HIV
activity in the nanomolar range (IC50 = 0.23–9.2 nM).
(b) An anti-HIV activity was evaluated using MaRBLE cells
obtained by transfection of HPB-Ma derived from human T-
lymphocytes with a luciferase gene and a CCR5 gene etc. of
which expressions were regulated by HIV-1 LTR. (c) For
more details, see: Oonishi, Y.; Awasaguchi, K.; Nomura, N.;
Todo, K.; Kawai, H.; Wakatsuki, T. Int. Patent Appl.,
WO2011090095, 2011. (d) Chiba-Mizutani, T.; Miura, H.;
Matsuda, M.; Matsuda, Z.; Yokomaku, Y.; Miyauchi, K.;
Nishizawa, M.; Yamamoto, N.; Sugiura, W. J. Clin.
Microbiol. 2007, 45, 447.
(15) (a) In a synthesis of 4-oxoquinoline derivatives, enolate
formation of 2,4-dichloroacetophenone was conducted with
t-BuOK as a base in THF at r.t. to give a good result of
obtaining ketene-S,N-acetal. (b) When 4-bromo-2-fluoro-
acetophenone (1) was used as a starting material, 2-anilino-
7-bromo-1-thiochromone was produced via the same
synthetic protocol.
(16) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald,
S. L. J. Am. Chem. Soc. 2005, 127, 4685.
(17) For a review of recent highlights, see: Singh, R. P.; Shreeve,
J. M. Acc. Chem. Res. 2004, 37, 31.
(18) General Procedure for the Synthesis of Aldehyde 3: To a
solution of 1-aryl-2-methyl-4-oxoquinoline 2 (1.58 g, 4.51
mmol) in 1,4-dioxane (18 mL) was added selenium dioxide
(0.53 g, 4.51 mmol) at r.t. The mixture was heated under
reflux for 4 h. The solvent was concentrated in vacuo, then
the residue was diluted with EtOAc and the suspension was
filtered. The filtrate was washed with sodium thiosulfate
solution and brine, dried over MgSO4, filtered and concen-
trated in vacuo. The residue was subjected to silica gel
column chromatography (hexane–EtOAc, 2:1 → 1:1,
gradient) to afford aldehyde 3 (0.99 g, 60% yield) as a pale
yellow solid. Analytical and Spectral Data of Aldehyde 3:
pale yellow solid; mp 195–196 °C. 1H NMR (400 MHz,
DMSO-d6): d = 9.64 (s, 1 H), 8.16 (d, J = 8.5 Hz, 1 H), 7.75
(ddd, J = 8.9, 8.9, 6.0 Hz, 1 H), 7.68 (dd, J = 8.5, 1.7 Hz, 1
H), 7.64–7.72 (m, 1 H), 7.36–7.42 (m, 1 H), 7.01 (br s, 1 H),
6.97 (s, 1 H). 13C NMR (100 MHz, DMSO-d6): d = 188.4,
177.3, 163.0 (dd, J = 250.0, 12.0 Hz), 158.3 (dd, J = 250.9,
13.6 Hz), 143.9, 142.7, 132.2 (d, J = 10.7 Hz), 128.2, 127.9,
127.8, 125.2, 121.1 (dd, J = 13.2, 4.1 Hz), 119.4, 118.5,
113.3 (dd, J = 22.3, 3.3 Hz), 105.7 (dd, J = 26.9, 23.6 Hz).
(5) For a recent review, see: Kouznetsov, V. V.; Mendez,
L. Y. V.; Gomez, M. M. Curr. Org. Chem. 2005, 9, 141.
(6) (a) Werner, W. Tetrahedron 1969, 25, 255. (b) Chen, B.;
Huang, X.; Wang, J. Synthesis 1987, 482. (c) Madrid, P. B.;
Sherrill, J.; Liou, A. P.; Weisman, J. L.; DeRisi, J. L.; Guy,
R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.
(7) Camps, R. Chem. Ber. 1899, 32, 3228.
© Thieme Stuttgart · New York
Synlett 2012, 23, 448–452