amino acid esters to produce enantioenriched R-quatern-
ary amino acid esters in a single transformation.
complex enzymatic systems are required to control the
competing reactivity of the quinonoid and the nucleophilic
nitrogen of the starting material 5.
Recently, we reported the intermediate presence of
azomethine ylides in picolinaldehyde/metal-mediated ami-
no acid racemizations and condensations.8 This work
demonstrated that azomethine ylide formation is facili-
tated by metal chelation, allowing racemization to occur
under mild conditions. We report here an important
extension of this chemistry showing that nickel chelates
of picolinaldehyde, in concert with palladium complexes,
catalyze the TsujiÀTrost allylation of unprotected amino
acid esters in excellent yields and demonstrate the potential
for excellent enantioselectivities (Scheme 1).9
Table 1. Initial Screens
entry
-Y
X
method
yield (%)a
1
2
3
4
-Br
1.0
0.1
1.0
0.1
A
A
B
B
11%
trace
47%
43%
Scheme 1. Picolinaldehyde-Catalyzed Amino Acid Allylation
-Br
-OAc
-OAc
a Yields were determined by 1H NMR using an internal standard.
Table 2. Reaction Optimization
Quinonoid intermediates are effective nucleophiles in
biological systems,10 suggesting that intermediates such as
6 should react well with appropriate electrophiles. Similar
intermediates are wellestablished inthe workofO’Donnell
and co-workers who use deprotonated amino acid imines
as nucleophiles in a variety of carbonÀcarbon bond form-
ing reactions.11 These intermediates are further established
to react with metal π-allyl complexes.12 However, in the
preceding examples, stoichiometric imine formation or
entry
additive (equiv)
yielda
1
2
3
4
5
6
N/A
24À73%
75%
H2O (3.0)
(7) (a) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2708. (b) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron:
Asymmetry 1998, 9, 3517. (c) Cativiela, C.; Diaz-de-Villegas, M. D. Tetra-
hedron: Asymmetry 2000, 11, 645. (d) Najera, C.; Sansano, J. M. Chem. Rev.
2007, 4584. (e) Maruoka, K. Org. Process Res. Dev. 2008, 12, 679. (f)
Cativiela, C.; Mario, O. Tetrahedron: Asymmetry 2009, 20, 1.
(8) (a) Felten, A.; Zhu, G.; Aron, Z. D. Org. Lett. 2010, 12, 1916. (b)
Chaulagain, M. R.; Aron, Z. D. J. Org. Chem. 2010, 75, 8271.
(9) (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett.
1965, 6, 4387. (b) Trost, B. M.; VanVranken, D. L. Chem. Rev. 1996, 96,
395. (c) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.
H2O (3.0), NH4Cl (0.5)
H2O (3.0), NH4OAc (0.5)
H2O (3.0), Me4NOAc (0.5)
H2O (3.0), HOAc (0.5)
70%
82%b
58%
52%
a Yields were determined by 1H NMR using an internal standard.
b Isolated yield.
(10) (a) Eliot, A. C.; Kirsch, J. F. Annu. Rev. Biochem. 2004, 73, 383.
(b) Richard, J. P.; Amyes, T. L.; Crugeiras, J.; Rios, A. Biochim. Biophys.
Acta 2011, 1814, 1419.
(11) (a) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506. (b) O’Donnell,
M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 2641. (c)
O’Donnell, M. J.; Eckrich, T. M. Tetrahedron Lett. 1978, 4625.
(12) (a) Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, T.;
Takemoto, Y. J. Org. Chem. 2003, 68, 6197. (b) Kanayama, T.; Yoshida,
K.; Miyabe, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2003, 42, 2054. (c)
Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. J. Org. Chem.
2002, 67, 7418. (d) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y.
Org. Lett. 2001, 3, 3329. (e) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui,
X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry
2001, 12, 1567. (f) Kazmaier, U.; Maier, S.; Zumpe, F. L. Synlett 2000,
1523. (g) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Cao, B.-X.; Sun, J. Chem.
Commun. 2000, 1933. (h) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999,
121, 10727. (i) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. 1999,
38, 1468. (j) Hiroi, K.; Hidaka, A.; Sezaki, R.; Imamura, Y. Chem.
Pharm. Bull. 1997, 45, 769. (k) Baldwin, I. C.; Williams, J. M. J.; Beckett,
R. P. Tetrahedron: Asymmetry 1995, 6, 1515. (l) Genet, J.-P.; Juge, S.;
Achi, S.; Mallart, S.; Montes, J. R.; Levif, G. Tetrahedron 1988, 44, 5263.
We hypothesized that the delocalization seen in quino-
noid 6 would cause it to react as a “soft” nucleophile in
contrast to the competing “hard” nitrogen nucleophile,
suggesting a mechanism for chemoselectivity. Early at-
tempts at the condensation using allyl bromide did not
bear this hypothesis out (Table 1, entries 1 and 2). Stoi-
chiometric loadings of picolinaldehyde were necessary to
minimize reaction at nitrogen, yet even these conditions
gave poor conversions. Accordingly, we turned our atten-
tion to softer metal π-allyl complexes. To our gratifica-
tion, reactions involving palladium π-allyl species gave im-
proved yields and exhibited multiple turnovers with respect
to the aldehyde-based catalyst (Table 1, entries 3 and 4).
It should be noted that the pH of these systems was critical
to selectivity, as superstoichiometric quantities of base led
Org. Lett., Vol. 14, No. 8, 2012
2131