T. Hasuda et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2757–2759
OMe
2759
OMe
References and notes
1. Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y.
Chem. Pharm. Bull. 1983, 31, 1424.
2. Itokawa, H.; Takeya, K.; Hitotsuyanagi, Y.; Morita, H. In The Alkaloids; Cordell, G.
A., Ed.; Academic Press: NY, 1997; Vol. 49, p 301.
Ala-2
O
O
Tyr-3
O
H
Me
Me
HN
Me
3. Jolad, S. D.; Hoffman, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.;
Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040.
4. (a) Majima, H.; Tsukagoshi, S.; Furue, H.; Suminaga, M.; Sakamoto, K.;
Wakabayashi, R.; Kishino, S.; Niitani, H.; Murata, A.; Genma, A.; Nukariya, N.;
Uematsu, K.; Furuta, T.; Kurihara, M.; Yoshida, F.; Isomura, S.; Takemoto, T.;
Hirashima, M.; Izumi, T.; Nakao, I.; Ohashi, Y.; Ito, K.; Asai, R. Jpn. J. Cancer
Chemother. 1993, 20, 67; (b) Yoshida, F.; Asai, R.; Majima, H.; Tsukagoshi, S.;
Furue, H.; Suminaga, M.; Sakamoto, K.; Niitani, H.; Murata, A.; Kurihara, M.;
Izumi, T.; Nakao, I.; Ohashi, Y.; Ito, K. Jpn. J. Cancer Chemother. 1994, 21, 199.
5. Zalacaín, M.; Zaera, E.; Vázquez, D.; Jiménez, A. FEBS Lett. 1982, 148, 95.
6. Sirdeshpande, B. V.; Toogood, P. L. Bioorg. Chem. 1995, 23, 460.
7. Fujiwara, H.; Saito, S.; Hitotsuyanagi, Y.; Takeya, K.; Ohizumi, Y. Cancer Lett.
2004, 209, 223.
N
N
Me
H
O
H
O
H
HN
Ala-4
HN
O
HN
Me
H
Me
H
Me
H
Me
H
D
-Ala-1
NH
O
NH
O
O
N
Me
O
N
Me
H
H
H
H
N
N
Me
Me
Tyr-6
Tyr-5
8. (a) Ahn, J.-M.; Boyle, N. A.; MacDonald, M. T.; Janda, K. D. Mini Rev. Med. Chem.
2002, 2, 463; (b) Deska, J.; Kazmaier, U. Curr. Org. Chem. 2008, 12, 355.
9. Harbeson, S. L.; Shatzer, S. A.; Le, T. B.; Buck, S. H. J. Med. Chem. 1992, 35, 3949.
10. (a) Boger, D. L.; Yohannes, D.; Zhou, J.; Patane, M. A. J. Am. Chem. Soc. 1993, 115,
3420; (b) Boger, D. L.; Zhou, J. J. Am. Chem. Soc. 1995, 117, 7364.
11. The software used for this calculation was MacroModel ver. 7.0 (Schrödinger
Inc.). The Monte Carlo (MC) search was configured using the ‘automatic setup’
routine in MacroModel with all amide configurations in the macrocycle fixed
as trans except for the amide bond between Ala-2 and Tyr-3. The calculation
consisted of 50,000 MC steps with 500 iterations per step using the AMBER⁄
force field and the PR conjugate gradient (PRCG) with no solvation.
12. (a) Hitotsuyanagi, Y.; Hasuda, T.; Matsumoto, Y.; Yamaguchi, K.; Itokawa, H.;
Takeya, K. Chem. Commun. 2000, 1633; (b) Hitotsuyanagi, Y.; Hasuda, T.;
Aihara, T.; Ishikawa, H.; Yamaguchi, K.; Itokawa, H.; Takeya, K. J. Org. Chem.
2004, 69, 1481.
O
O
OMe
OMe
conformer-I
conformer-II
NOE H
H
Figure 5. Key NOE correlations of analogue 3.
NMe, and Ala-4 H3b/Tyr-5 NMe, indicating that the amide configu-
rations between Ala-2 and Tyr-3 and between Ala-4 and Tyr-5 are
both trans. The correlation between Tyr-5 H /Tyr-6 H demon-
strated the proximity of these protons, suggesting that the two
carbon atoms, Tyr-5 C and Tyr-6 C , are in a gauche or nearly an
eclipse arrangement as expected from the Monte Carlo conforma-
tional search of 3 (Fig. 2). Further, an NOE correlation was observed
between D-Ala-1 H /Ala-4 H3b. This correlation is usually observed
when this series of natural peptides adopt the conformation as de-
picted in the crystal structure of RA-II (5) in Figure 2. Accordingly,
this conformer seemed to have very similar structural features to
the calculated structure of 3 shown in green in Figure 2.
The conformer with population 44% (conformer-II, Fig. 5) dif-
fered from conformer-I in that it adopted a cis amide configuration
between Ala-2 and Tyr-3 (Fig. 5). The structure of the third con-
former with population 2% could not be determined due to weak
signal intensity.
13. NMR data of analogue 3 in pyridine-d5 at 300 K. Conformer-I:
4.81/dC 50.4; b, dH 1.56 (3H)/dC 20.3; C@O, dC 173.1; NH, dH 8.11), Ala-2 (
dH 4.76/dC 46.2; b, dH 1.47 (3H)/dC 16.6; C@O, dC 173.2; NH, dH 9.68), Tyr-3
, dH 4.15/dC 69.0; b, dH 3.88–3.94 (2H)/dC 33.7; , dC 131.9; d, dH 7.27 (2H)/
dC 130.9 (2C); , dH 7.00 (2H)/dC 114.4 (2C); f, dC 158.8; C@O, dC 169.5; NMe,
dH 3.09 (3H)/dC 40.3; OMe, dH 3.70 (3H)/dC 55.2), Ala-4 ( , dH 5.28/dC 47.2; b,
dH 1.46 (3H)/dC 18.6; C@O, dC 173.3; NH, dH 7.77), Tyr-5 ( , dH 5.00/dC 56.4;
b, dH 2.61, 2.85/dC 36.7; , dC 138.5; da, dH 7.30–7.38/dC 131.2; db, dH 7.53/dC
133.1; a, dH 7.30–7.38/dC 126.0; b, dH 6.83/dC 126.0; f, dC 158.6; CH2, dH
2.17, 2.35/dC 53.9; NMe, dH 2.76 (3H)/dC 28.8), Tyr-6 ( , dH 3.05/dC 67.8; b,
dH 2.41, 3.50/dC 30.1; , dC 134.2; da, dH 6.88/dC 121.9; db, dH 4.73/dC 118.8;
a, dH 6.83/dC 113.0; b, dC 154.0; f, dC 146.9; C@O, dC 171.5; NMe, dH 2.13
(3H)/dC 38.9; OMe, dH 3.84 (3H)/dC 56.3). Conformer-II: -Ala-1 ( , dH 5.00/dC
50.9; b, dH 1.50 (3H)/dC 20.3; C@O, dC 173.1; NH, dH 8.66), Ala-2 ( , dH 5.15/
dC 43.6; b, dH 0.96 (3H)/dC 17.8; C@O, dC 173.3; NH, dH 10.10), Tyr-3 ( , dH
5.78/dC 62.2; b, dH 3.21, 3.43/dC 34.2; , dC 130.1; d, dH 7.26 (2H)/dC 130.8
(2C); , dH 6.94 (2H)/dC 114.6 (2C); f, dC 159.0; C@O, dC 168.2; NMe, dH 3.40
(3H)/dC 29.5; OMe, dH 3.64 (3H)/dC 55.2), Ala-4 ( , dH 5.22/dC 47.7; b, dH
1.26/dC 19.1; C@O, dC 172.9; NH, dH 9.13), Tyr-5 (
, dH 5.05/dC ⁄; b, dH 2.85,
⁄/dC 36.2; , dC 138.6; da, dH 7.30–7.38/dC 129.7; db, dH 7.49/dC 133.2; a, dH
7.30–7.38/dC 126.3;
dH 2.81 (3H)/dC ⁄), Tyr-6 (
134.5; da, dH 6.98/dC 122.1; db, dH 4.65/dC 119.0;
D-Ala-1 (a, dH
a
a
a
,
a
a
(a
c
e
a
a
a
c
e
e
a
c
e
e
D
a
a
a
c
e
a
a
c
e
Analogue 3 and, as reference, peptide 1, were evaluated for their
cytotoxicity to P-388 leukemia cells, and their IC50 values were 5.0
e
b, dH 6.76/dC 126.1; f, dC 158.7; CH2, dH ⁄/dC ⁄; NMe,
a
, dH 3.09/dC 68.6; b, dH 2.32, 3.62/dC 29.7;
c
, dC
and 0.0043 l
g/mL, respectively.14 In spite of the resemblance of
ea, dH 6.87/dC 113.1;
eb, dC
154.1; f, dC 146.9; C@O, dC 171.4; NMe, dH 2.05 (3H)/dC 39.4; OMe, dH 3.86
(3H)/dC 56.3). Remarks: ⁄ not assigned in the present experiment.
14. The procedure for the cytotoxicity assay has previously been described, see:
Kim, I. H.; Takashima, S.; Hitotsuyanagi, Y.; Hasuda, T.; Takeya, K. J. Nat. Prod.
2004, 67, 863.
the 3D structure of the most populated conformer of analogue 3
in pyridine-d5 solution to that of the active conformation of this
series of peptides as represented by the crystal structure of RA-II
(5),15 analogue 3 showed only 1/1200 of the activity of peptide 1.
This unexpectedly weak activity of analogue 3 may be due to sub-
tle differences in the peptide backbone conformation and/or the
lack of amide carbonyl oxygen at Tyr-5 in analogue 3.
15. Itokawa, H.; Kondo, K.; Hitotsuyanagi, Y.; Isomura, M.; Takeya, K. Chem. Pharm.
Bull. 1993, 41, 1402.