370
K. Ghosh and A.R. Sarkar
J ¼ 8 Hz), 4.67 (t, 2H, J ¼ 8 Hz), 1.94–1.91 (m, 2H), 1.37–
1.31 (m, 2H), 0.93 (t, 3H, J ¼ 7.20 Hz); 13C NMR (d6-
DMSO, 100 MHz): d 165.9, 165.7, 139.4 (one carbon
unresolved), 135.8, 135.2, 134.9, 133.5, 131.7, 131.5, 131.2,
130.7, 130.4, 129.1, 128.05, 127.7, 127.25, 127.20, 127.02,
126.4, 125.6, 125.4, 125.1, 125.04, 124.9, 124.8, 124.3,
123.7, 122.8, 61.1, 32.7, 18.7, 13.3; FTIR: n cm21 (KBr):
3397, 1680, 1635, 1654, 1539, 1555, 1504, 1462; m/z (ESþ):
498.3 (M 2 PF26 2 2)þ.
proton assigned as Ho’ moved to the downfield direction
(Dd ¼ 0.94 ppm) effectively. This was also true for HSO42
where the amide protons underwent appreciable downfield
chemical shift (DdH ¼ 0.42 ppm; DdH ¼ 0.48 ppm) but
a
b
pyridinium ortho proton (Ho) was almost positionally
unaffected. The Ho’ proton moved to the downfield
direction weakly suggesting equilibrium binding structures
C/D, shown in Figure 10. The Hp proton did not show any
measurable shift in the interaction process.
2. Energy optimisation was performed using CS Chem 3D
version 10.0.
In conclusion, we have designed and synthesised a
simple hetero bis amide salt 1, which shows unique
recognition and sensing properties. The open cleft of 1
discriminates the aromatic monocarboxylates from the
aliphatic ones. Results demonstrate that the hetero bis amide
salt 1 selectively recognises benzoate from other aromatic
and aliphatic monocarboxylates examined in the present
study, by exhibiting large binding-induced fluorescence
enhancing effect. In addition, tetrahedral-shaped HSO24 is
also sensed with moderate binding constant value based on
steric complementarity and is differentiated from other
tetrahedral-shaped anions studied. The high affinity and
selectivity of 1 for benzoate are due to the combined effects
of semi-rigid structures, charge–charge interactions, invol-
vement of both N-H-- -O and C-H- - -O hydrogen bonds and
more specifically p-stacking interaction. Further progress in
this direction is underway in our laboratory.
References
(1) Gale, P.A. Coord. Chem. Rev. 2003, 240, 191–221.
(2) Chemical Sensors and Biosensors for Medical and
Biological Applications; Spichiger-Keller, U.S., Ed.;
Wiley: Weinheim, Germany, 1998.
(3) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103,
4419–4476.
(4) Gale, P.A.; Garcıa-Garrido, S.E.; Garric, J. Chem. Soc. Rev.
2008, 37, 151–190.
(5) Gale, P.A. Coord. Chem. Rev. 2001, 213, 79–128.
(6) Gunnlaugsson, T.; Glynn, M.; Tocci, G.M.; Kruger, P.E.;
Pfeffer, F.M. Coord. Chem. Rev. 2006, 250, 3094–3117,
and references cited therein.
(7) De Silva, A.P.; Gunartne, H.Q.; Gunnlaugsson, T.; Huxley,
A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Chem.
Rev. 1997, 97, 1515–1566.
(8) Czarnik, A.W. Acc. Chem. Res. 1994, 27, 302–308.
(9) Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Garcia-
Espana, E.; Giorgi, C.; Llinares, J.M.; Ramirez, A.;
Valtancoli, B. Inorg. Chem. 1999, 38, 620–621.
´
Supplementary Data
(10) Schmuck, C.; Machon, U. Eur. J. Org. Chem. 2006, 4385.
(11) Ghosh, K.; Sarkar, A.R. Tetrahedron Lett. 2009, 50, 85–88.
(12) Ghosh, K.; Saha, I.; Patra, A. Tetrahedron Lett. 2009, 50,
2392–2397, and references cited therein.
Figures showing the change in absorption and fluorescence
spectra of 1 in the presence of the anions and
monocarboxylic acids, Job’s plots of receptor 1 in presence
of the H2PO24 , HSO24 , binding constant curves for 1 with
benzoate and hydrogen sulphate, MM2-optimised geome-
tries of the different conformations of 1 and also of the
complex 1 benzoate, COSY spectrum of 1, NMR titration
spectra for 1 with benzoate, binding constant curve for 1
with benzoate, general procedures for fluorescence and
UV–vis titrations and Job’s plot experiments are available
online.
(13) Wong, W.W.H.; Vickers, M.S.; Cowley, A.R.; Paul, R.L.;
Beer, P.D. Org. Biomol. Chem. 2005, 3, 4201–4208.
(14) Bai, Y.; Zhang, B.-G.; Xu, J.; Duan, C.-Y.; Dang, D.-B.;
Liu, D.-J.; Meng, Q.-J. New J. Chem. 2005, 29, 777–779.
(15) (a) Kim, S.K.; Kang, B.-G.; Koh, H.S.; Yoon, Y.J.; Jung,
S.J.; Jeong, B.; Lee, K.-D.; Yoon, J. Org. Lett. 2004, 6,
4655–4658. (b) Qin, D.-B.; Xu, F.-B.; Wan, X.-J.; Zhao, Y.-
J.; Zhang, Z.-Z. Tetrahedron Lett. 2006, 47, 5641–5643.
(16) (a) Szumna, A.; Jurczak, J. Eur. J. Org. Chem. 2001, 4031–
4039. (b) Bates, G.W.; Gale, P.A.; Light, M.E. Chem.
Commun. 2007, 2121–2123.
(17) (a) Cho, E.J.; Ryu, B.J.; Lee, Y.J.; Nam, K.C. Org. Lett.
2005, 7, 2607–2609. (b) Caltagirone, C.; Bates, G.W.;
Gale, P.A.; Light, M.E. Chem. Commun. 2008, 61–63.
(18) Sessler, J.L.; An, D.; Cho, W.-S.; Lynch, V.; Marquez, M.
Chem. Commun. 2005, 540–542, and references cited therein.
(19) Mammoliti, O.; Allasia, S.; Dixon, S.; Kilburn, J.D.
Tetrahedron 2009, 65, 2184–2195.
(20) Jeong, K.-S.; Cho, Y.L. Tetrahedron Lett. 1997, 38, 3279–
3282.
(21) Wallance, K.J.; Belcher, W.J.; Turner, D.R.; Syed, K.F.;
Steed, J.W. J. Am. Chem. Soc. 2003, 125, 9699–9715.
(22) Gong, W.; Hiratani, K. Tetrahedron Lett. 2008, 49, 5655–
5657.
Acknowledgements
We thank the CSIR [01 (2240)/08-EMRII], Government of
India for financial support. A.R.S. thanks the University of
Kalyani for providing a university research fellowship. K.G.
thanks the DST and UGC, Government of India for providing
facilities in the department under FIST and SAP programs,
respectively.
Notes
1. Mp 1248C; 1H NMR (d6-DMSO 400 MHz): d 11.50 (s, NH,
1H), 11.03 (s, NH, 1H), 9.59 (s, 1H), 8.82–8.80 (m, 2H),
8.71 (d, 1H, J ¼ 8 Hz), 8.49 (d, 1H, J ¼ 8 Hz), 8.37–8.27
(m, 4H), 8.24–8.19 (m, 5H), 8.16–8.09 (m, 2H), 7.85 (t, 1H,
(23) (a) Ghosh, K.; Sarkar, A.R.; Masanta, G. Tetrahedron Lett.
2007, 48, 8725–8729. (b) Ghosh, K.; Sarkar, A.R.
Tetrahedron Lett. 2009, 50, 85–88. (c) Ghosh, K.; Sarkar,
A.R.; Patra, A. Tetrahedron Lett. 2009, 50, 6557–6561.