16-Silatripyrrane 3 (0.5 g, 0.83 mmol), and pentafluorobenzalde-
hyde (0.103 mL, 0.83 mmol) were added and the solution was
purged with nitrogen for 20 min. The flask was placed in ice-
water bath and protected from light. Subsequently, MSA
(0.011 mL, 0.2 mmol) was added. After stirring at 0 °C for 2 h,
a portion of DDQ (0.681 g, 3 mmol) was added and stirring was
continued for a further 5 min. The solvent was removed by
means of a vacuum rotary evaporator. The dark residue was dis-
solved in dichloromethane and subjected to preliminary chroma-
tographic separation on a short basic alumina (grade II) column.
The fast-moving fraction was collected and separated again by
chromatography on a basic alumina (grade II) column using a
mixture of dichloromethane–hexane (ratio 5 : 5 v/v) as the
eluent. Compound 4a eluted first as a brown-yellow. The crude
product was further purified by column chromatography on a
basic alumina (grade II, dichloromethane–hexane 4 : 6 v/v).
References
1 J. L. Sessler and S. J. Weghorn, in Expanded, Contracted, and Isomeric
Porphyrins, ed. J. E. Baldwin and P. D. Magnus, Elsevier Science,
Oxford, 1997.
2 H. Furuta, H. Maeda and A. Osuka, Chem. Commun., 2002, 1795–1804.
3 S. K. Pushpan, S. Venkatraman, V. G. Anand, J. Sankar, H. Rath and
T. K. Chandrashekar, Proc.–Indian Acad. Sci., Chem. Sci., 2002, 114,
311–338.
4 T. K. Chandrashekar and S. Venkatraman, Acc. Chem. Res., 2003, 36,
676–691.
5 J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42, 5134–
5175.
6 M. Pawlicki and L. Latos-Grażyński, Chem. Rec., 2006, 6, 64–78.
7 R. Misra and T. K. Chandrashekar, Acc. Chem. Res., 2008, 41, 265–279.
8 M. Pawlicki and L. Latos-Grażyński, Carbaporphyrinoids – synthesis
and coordination properties, in Handbook of Porphyrin Science:
With Applications to Chemistry, Physics, Materials Science,
Engineering, Biology and Medicine, ed. K. M. Kadish, K. M. Smith
and R. Guilard, World Scientific Publishing, Singapore, 2010, pp.
104–192.
9 A. Osuka and S. Saito, Chem. Commun., 2011, 47, 4330–4339.
10 M. Toganoh and H. Furuta, Chem. Commun., 2012, 48, 937–954.
11 C. Brückner, E. D. Sternberg and D. Dolphin, Chem. Commun., 1997,
1689–1690.
12 M. G. P. M. Neves, R. M. Martins, A. C. Tomé, A. J. D. Silvestre,
A. M. S. Silva, V. Félix, J. A. S. Cavaleiro and M. G. B. Drew, Chem.
Commun., 1999, 385–386.
13 J. L. Sessler, S. J. Weghorn, Y. Hiseada and V. Lynch, Chem.–Eur. J.,
1995, 1, 56–67.
14 J. L. Sessler, S. J. Weghorn, T. Morishima, M. Rosingana, V. Lynch and
V. Lee, J. Am. Chem. Soc., 1992, 114, 8306–8307.
15 J. L. Sessler, T. Morishima and V. Lynch, Angew. Chem., Int. Ed. Engl.,
1991, 30, 977–980.
16 T. Kohler, D. Seidel, V. Lynch, O. F. Arp, Z. Ou, K. M. Kadish and
J. L. Sessler, J. Am. Chem. Soc., 2003, 125, 6872–6873.
17 L. Simkhovich, I. Goldberg and Z. Gross, Org. Lett., 2003, 5, 1241–
1244.
18 M. Suzuki and A. Osuka, Chem.–Eur. J., 2007, 13, 196–202.
19 T. Koide, G. Kashiwazaki, M. Suzuki, K. Furukawa, M. C. Yoon,
S. Cho, D. Kim and A. Osuka, Angew. Chem., Int. Ed., 2008, 47,
9661–9665.
20 S. Mori and A. Osuka, J. Am. Chem. Soc., 2005, 127, 8030–8031.
21 S. Mori, S. Shimizu, R. Taniguchi and A. Osuka, Inorg. Chem., 2005,
44, 4127–4129.
22 S. Mori, S. Shimizu, J. Y. Shin and A. Osuka, Inorg. Chem., 2007, 46,
4374–4376.
23 S. Mori and A. Osuka, Inorg. Chem., 2008, 47, 3937–3939.
24 T. Koide, G. Kashiwazaki, K. Furukawa and A. Osuka, Inorg. Chem.,
2009, 48, 4595–4597.
25 S. Shimizu, V. G. Anand, R. Taniguchi, K. Furukawa, T. Kato,
T. Yokoyama and A. Osuka, J. Am. Chem. Soc., 2004, 126, 12280–
12281.
1
Yield of 4a: 6.6 mg (1%). H MR (500 MHz, CD2Cl2, 240 K) δ
11.87 (s, 2H, NH); 7.18 (d, 4H, 5,30-o-Tol); 7.16 (d, 2H, 17,18-
p-Ph); 7.08 (m, 2H, 5,3-m′-Ph); 7.05 (m, 4H, 17,18-o′-Ph,
17,18-m-Ph); 7.03 (2d, 8H, 15,20-o-Tol, 15,20-m-Tol); 6.99 (t,
2H, 2,3-p-Ph); 6.94 (m, 2H, 17,18-m′-Ph); 6.92 (d, 4H, 5,30-m-
Tol); 6.81 (d, 2H, 17,18-o-Ph); 6.76 (m, 2H, 2,3-m-Ph); 6.73 (d,
2H, 2,3-o′-Ph); 6.37 (d, 2H, 12, 23); 6.34 (d, 2H, 2,3-o-Ph); 6.26
(d, 2H, 13, 22); 6.10 (d, 2H, 8, 27); 5.67 (d, 2H, 7, 28); 5.01 (s,
2H, 15, 20); 4.84 (s, 2H, 5, 30); 2.26 (s, 6H, 15,20-p-Me); 2.23
(s, 6H, 5,30-p-Me); 0.79 (s, 3H, 34-i-MeSi); 0.33 (s, 3H, 31-o-
MeSi); −0.88 (s, 3H, 34-o-MeSi); −1.05 (s, 3H, 31-i-MeSi). 13
NMR (126 MHz, CD2Cl2, 240 K): δ 166.6 (14, 21); 159.5 (6,
C
1
29); 156.4 (17, 18); 155.4 (2, 3); 145.0 (10,25-C6F5, J(F,C)
≈
2
1
250 Hz, J(F,C) ≈ 20 Hz); 144.5 (10,25-C6F5, J(F,C) ≈ 250 Hz,
2J(F,C) ≈ 20 Hz); 142.3 (11, 24); 140.5 (1, 4); 139.8 (16, 19);
1
139.6 (C1-15,20-Tol); 139.4 (10,25-C6F5, J(F,C) ≈ 250 Hz);
138.7 (C1-17,18-Ph); 138.4 (C1-5,30-Tol); 138.3 (C1-2,3-Ph);
137.4(2 × 10,25-C6F5, J(F,C) ≈ 250 Hz); 136.5 (9, 26); 136.1
1
(C4-15,20-Tol); 136.0 (C4-5,30-Tol); 129.6 (12, 23); 129.2 (2,3-
o-Ph); 129.1 (5,30-m-Tol); 129.0 (17,18-o-Ph); 128.9 (15,20-o-
Tol, 15,20-m-Tol); 128.7 (2,3-o′-Ph); 128.6 (17,18-m′-Ph); 128.3
(5,30-o-Tol); 127.8 (17,18-p-Ph); 127.8 (2,3-m-Ph); 127.6
(17,18-o′-Ph); 127.0 (2,3-m-Ph); 126.6 (17,18-m-Ph); 126.1
(2,3-p-Ph); 125.3 (8, 27); 123.1 (13, 22); 121.5 (10, 25); 116.5
(7, 28); 111.3 (C1-10,25-C6F5); 47.9 (15, 20); 46.7 (5, 30); 21.2
(5,30-p-Me); 21.0 (15,20-p-Me); −0.3 (34-i-MeSi); −2.4 (31-o-
MeSi); −7.6 (34-o-MeSi); −8.1 (31-i-MeSi). 19F NMR
(470 MHz, CD2Cl2, 240 K) δ −140 (10,25-o-C6F5); −141
(10,25-o′-C6F5); −154 (10,25-p-C6F5); −162 (10,25-m′-C6F5);
−163 (10,25-m-C6F5). 29Si NMR (99 MHz, CD2Cl2, 298 K): δ
6.35 (34-Si); 5.39 (31-Si). UV-vis (CH2Cl2, 298 K): λmax = 318,
450 nm. HRMS (ESI): m/z calcd for C98H75N4F10Si+:
1553.5365, found: 1553.5275 [M + H]+.
26 V. Král, J. L. Sessler, R. S. Zimmerman, D. Seidel, V. Lynch and
B. Andrioletti, Angew. Chem., Int. Ed., 2000, 39, 1055–1058.
27 M. Inoue, C. Ikeda, Y. Kawata, S. Venkatraman, K. Furukawa and
A. Osuka, Angew. Chem., Int. Ed., 2007, 46, 2306–2309.
28 T. Higashino, J. M. Lim, T. Miura, S. Saito, J. Y. Shin, D. Kim and
A. Osuka, Angew. Chem., Int. Ed., 2010, 49, 4950–4954.
29 K. Moriya, S. Saito and A. Osuka, Angew. Chem., Int. Ed., 2010, 49,
4297–4300.
30 A. Młodzianowska, L. Latos-Grażyński, L. Szterenberg and M. Stępień,
Inorg. Chem., 2007, 46, 6950–6957.
31 A. Młodzianowska, L. Latos-Grażyński and L. Szterenberg, Inorg.
Chem., 2008, 47, 6364–6374.
32 J. Skonieczny, L. Latos-Grażyński and L. Szterenberg, Inorg. Chem.,
2009, 48, 7394–7407.
33 H. Furuta, T. Asano and T. Ogawa, J. Am. Chem. Soc., 1994, 116, 767–
768.
Acknowledgements
Financial support from the Ministry of Science and Higher Edu-
cation (Grant N N204 021939) is kindly acknowledged.
Quantum chemical calculations have been carried out at the
Poznań Supercomputer Center (Poznań) and Wrocław Super-
computer Center (Wrocław).
34 P. J. Chmielewski, L. Latos-Grażyński, K. Rachlewicz and T. Głowiak,
Angew. Chem., Int. Ed. Engl., 1994, 33, 779–781.
35 A. Srinivasan, T. Ishizuka, A. Osuka and H. Furuta, J. Am. Chem. Soc.,
2003, 125, 878–879.
36 S. Gokulnath, K. Yamaguchi, M. Toganoh, S. Mori, H. Uno and
H. Furuta, Angew. Chem., Int. Ed., 2011, 50, 2302–2306.
3470 | Org. Biomol. Chem., 2012, 10, 3463–3471
This journal is © The Royal Society of Chemistry 2012