ACCEPTED MANUSCRIPT
[5] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G.
Li, A polymer tandem solar cell with 10.6% power conversion efficiency, Nature communications, 4
(2013) 1446.
[6] X. Xu, Z. Li, Z. Wang, K. Li, K. Feng, Q. Peng, 10.20% Efficiency polymer solar cells via
employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-
cascade indene-C70 bisadduct acceptor, Nano Energy, 25 (2016) 170-183.
[7] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell
applications, Chemical reviews, 109 (2009) 5868-5923.
[8] Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable
electronic energy levels and broad absorption, Accounts of chemical research, 45 (2012) 723-733.
[9] J. Chen, Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-
heterojunction photovoltaic devices, Accounts of chemical research, 42 (2009) 1709-1718.
[10] H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Molecular design of benzodithiophene-based
organic photovoltaic materials, Chemical reviews, 116 (2016) 7397-7457.
[11] J. Yuan, J. Ouyang, V. Cimrová, M. Leclerc, A. Najari, Y. Zou, Development of quinoxaline
based polymers for photovoltaic applications, Journal of Materials Chemistry C, 5 (2017) 1858-
1879.
[12] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar
cells with enhanced open-circuit voltage and efficiency, Nature photonics, 3 (2009) 649.
[13] J. Luo, H. Wu, C. He, A. Li, W. Yang, Y. Cao, Enhanced open-circuit voltage in polymer solar
cells, Applied Physics Letters, 95 (2009) 200.
[14] A.C. Stuart, J.R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, W. You, Fluorine substituents
reduce charge recombination and drive structure and morphology development in polymer solar
cells, Journal of the American Chemical Society, 135 (2013) 1806-1815.
[15] S.C. Price, A.C. Stuart, L. Yang, H. Zhou, W. You, Fluorine substituted conjugated polymer of
medium band gap yields 7% efficiency in polymer− fullerene solar cells, Journal of the American
Chemical Society, 133 (2011) 4625-4631.
[16] X.-P. Xu, Y. Li, M.-M. Luo, Q. Peng, Recent progress towards fluorinated copolymers for
efficient photovoltaic applications, Chinese Chemical Letters, 27 (2016) 1241-1249.
[17] J. Kim, M.H. Yun, G.-H. Kim, J. Lee, S.M. Lee, S.-J. Ko, Y. Kim, G.K. Dutta, M. Moon, S.Y.
Park, Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic
photovoltaics: towards an understanding of relationships between polymer energy levels
engineering and ideal morphology control, ACS applied materials & interfaces, 6 (2014) 7523-7534.
[18] Y. Zhang, J. Zou, C.-C. Cheuh, H.-L. Yip, A.K.-Y. Jen, Significant improved performance of
photovoltaic cells made from a partially fluorinated cyclopentadithiophene/benzothiadiazole
conjugated polymer, Macromolecules, 45 (2012) 5427-5435.
[19] S.K. Putri, Y.H. Kim, D.R. Whang, M.S. Lee, J.H. Kim, D.W. Chang, Step-by-step
improvement in photovoltaic properties of fluorinated quinoxaline-based low-band-gap polymers,
Organic Electronics, 47 (2017) 14-23.
[20] S. Xu, L. Feng, J. Yuan, Z.-G. Zhang, Y. Li, H. Peng, Y. Zou, Hexafluoroquinoxaline Based
Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency, ACS applied materials &
interfaces, 9 (2017) 18816-18825.
[21] K.C. Lee, T. Kim, S. Song, Y. Kim, G.K. Dutta, D.S. Kim, J.Y. Kim, C. Yang, Medium bandgap
copolymers based on carbazole and quinoxaline exceeding 1.0 V open-circuit voltages, RSC
Advances, 6 (2016) 17624-17631.
[22] P. Deng, Z. Wu, K. Cao, Q. Zhang, B. Sun, S.R. Marder, Trifluoromethylated thieno [3, 4-b]
19