64
Y. Zhang et al. / Journal of Photochemistry and Photobiology A: Chemistry 227 (2012) 59–64
the FDPA1 and FDPA2 film after annealed at 100 ◦C for 10 h under
air atmosphere as shown in Fig. 5d and e, respectively. The XRD
pattern of the heated sample was nearly the same as that of the
original sample except for the slight changes in diffraction peaks
intensity (Fig. 6b and d). As a comparison, DPA film suffered obvi-
ous crystallizing after the same thermal treating, and large-scale
quadrate particles with edge length ranging from 0.5 to 1.2 m
were observed in Fig. 5f. The above results further indicated the
thermal stability of oligomers FDPA1 and FDPA2 was better than
that of corresponding core. The presence of the end-capping TPAF
group hindered close packing and crystallization may be the reason
for the increase of film morphological stability.
[11] A. Marrocchia, A. Spalletti, S. Ciorbaa, M. Seri, F. Elisei, A. Taticchia, Synthesis
and photo-physical properties of conjugated anthracene-based compounds, J.
Photochem. Photobiol. A 211 (2010) 162–169.
[12] S.H. Lin, F.I. Wu, R.S. Liu, Synthesis, photophysical properties and color tuning
of highly fluorescent 9,10-disubstituted-2,3,6,7-tetraphenylanthracene, Chem.
Commun. 696 (2009) 1–6963.
[13] Z.J. Zhao, J.H. Li, P. Lu, Y. Yang, Fluorescent, carrier-trapping dopants for
highly efficient single-layer polyfluorene LEDs, Adv. Funct. Mater. 17 (2007)
2203–2210.
[14] J.H. Huang, B. Xu, J. Hua Su, C.H. Chen, H. Tian, Efficient blue lighting materials
based on truxene-cored anthracene derivatives for electroluminescent devices,
Tetrahedron 66 (2010) 7577–7582.
[15] D. Kumar, K.R.J. Thomas, Optical properties of pyrene and anthracene con-
taining imidazoles: experimental and theoretical investigations, J. Photochem.
Photobiol. A 218 (2011) 162–173.
[16] K.M. Omer, S.Y. Ku, K.T. Wong, A.J. Bard, Efficient and stable blue electro
generated chemiluminescence of fluorene-substituted aromatic hydrocarbons,
Angew. Chem. Int. Ed. 48 (2009) 9300–9303.
[17] J.H. Huang, J.H. Su, X. Li, M.K. Lam, K.M. Fung, H.H. Fan, K.W. Cheah, C.H.
Chen, H. Tian, Bipolar anthracene derivatives containing hole- and electron-
transporting moieties for highly efficient blue electroluminescence devices, J.
Mater. Chem. 21 (2011) 2957–2964.
[18] V.H. Gessner, T.D. Tilley, Diphenylanthracene macrocylces from reductive
zirconocene coupling: on the edge of steric overload, Org. Lett. 5 (2011)
1154–1157.
[19] Y.Y. Lyu, J. Kwak, O. Kwon, S.H. Lee, D. Kim, C. Lee, K. Char, Silicon-cored
anthracene derivatives as host materials for highly efficient blue organic light-
emitting devices, Adv. Mater. 20 (2008) 2720–2729.
[20] T.H. Liu, W.J. Shen, C.K. Yen, C.Y. Iou, H.H. Chen, B. Banumathy, C.H. Chen, Doped
blue emitters of 9,10-di(2-naphthyl)anthracene in organic electroluminescent
devices, Synth. Met. 137 (2003) 1033–1034.
[21] Y.H. Kim, H.C. Jeong, S.H. Kim, K. Yang, S.K. Kwon, High-purity-blue and high-
efficiency electroluminescent devices based on anthracene, Adv. Funct. Mater.
15 (2005) 1799–1805.
[22] M.R. Zhu, Q. Wang, Y. Gu, X.S. Cao, C. Zhong, D.G. Ma, J.G. Qin, C.L. Yang, Efficient
deep-blue emitters comprised of an anthracene core and terminal bifunc-
tional groups for nondoped electroluminescence, J. Mater. Chem. 21 (2011)
6409–6415.
4. Conclusions
In conclusion, two novel non-coplanar oligomers containing
DPA unit as the core and two TPAF units as the peripheries
were facilely prepared by Suzuki coupling and Friedel–Crafts reac-
tion. Amorphous and spiro-configuration molecular gives excellent
performances, such as good thermal, morphological stabilities,
excellent fluorescence quantum yield and wide energy gap, to the
two blue-emitting oligomers. Additionally, the presence of TPA
improved the hole-injection and -transporting ability of the result-
ing materials. Therefore, it is reasonably inferred that a novel class
of blue-emitting materials with excellent thermal and electro-
chemical stability, high fluorescence quantum yield as well as high
HOMO energy levels is expected to be achieved via this end-capping
strategy.
[23] Z.Y. Xia, J.H. Su, W.Y. Wong, L. Wang, K.W. Cheah, H. Tian, C.H. Chen, High per-
formance organic light-emitting diodes based on tetra(methoxy)-containing
anthracene derivatives as a hole transport and electron-blocking layer, J. Mater.
Chem. 20 (2010) 8382–8388.
[24] S.L. Tao, Y.C. Zhou, C.S. Lee, S.T. Lee, D. Huang, X.H. Zhang, Highly efficient non-
doped blue organic light-emitting diodes based on anthracene-triphenylamine
derivatives, J. Phys. Chem. C 112 (2008) 14603–14606.
[25] J.H. Huang, B. Xua, M.K. Lam, K.W. Cheah, C.H. Chen, J.H. Su, Unsymmetrically
amorphous 9,10-disubstituted anthracene derivatives for high-efficiency blue
organic electroluminescence devices, Dyes Pigments 89 (2011) 155–161.
[26] W.J. Shen, R. Dodda, C.C. Wu, F.I. Wu, T.H. Liu, H.H. Chen, C.H. Chen, C.F.
Shu, Spirobifluorene-linked bisanthracene: an efficient blue emitter with pro-
nounced thermal stability, Chem. Mater. 16 (2004) 930–934.
Acknowledgements
The authors gratefully thank the support of National Basic
Research Program of China (2010CB635108, 2011CBA00700), Nat-
ural Science Foundation of Zhejiang Province, China (Y4090260),
Major Science and Technology, Special and Priority Themes of Zhe-
jiang Province, China (2009C14004).
References
[27] M.A. Reddy, A. Thomas, K. Srinivas, V.J. Rao, K. Bhanuprakash, B. Sridhar, A.
Kumar, M.N. Kamalasanan, R. Srivastava, Synthesis and characterization of
9,10-bis(2-phenyl-1,3,4-oxadiazole) derivatives of anthracene: efficient n-type
emitter for organic light-emitting diodes, J. Mater. Chem. 19 (2009) 6172–6184.
[28] W.J. Jo, K.H. Kim, H.C. No, D.Y. Shin, S.J. Ohb, J.H. Sonb, Y.H. Kimc, Y.K. Cho, Q.H.
Zhao, K.H. Lee, H.Y. Oh, S.K. Kwon, High efficient organic light emitting diodes
using new 9,10-diphenylanthracene derivatives containing bulky substituents
on 2,6-positon, Synth. Met. 159 (2009) 1359–1364.
[29] K.H. Lee, J.N. You, S. Kang, J.Y. Lee, H.J. Kwon, Y.K. Kim, S.S. Yoon,
Synthesis and electroluminescent properties of blue-emitting t-butylated
bis(diarylaminoaryl)anthracenes for OLEDs, Thin Solid Films 518 (2010)
6253–6258.
[30] M.X. Yu, J.P. Duan, C.H. Lin, C.H. Cheng, Y.T. Tao, Diaminoanthracene derivatives
as high performance green host electro-luminescent materials, Chem. Mater.
14 (2002) 3958–3963.
[31] K. Danel, T.H. Huang, J.T. Lin, Y.T. Tao, C.H. Chuen, Blue-emitting anthracenes
with end-capping diarylamines, Chem. Mater. 14 (2002) 3860–3865.
[32] K.M. Omer, S.Y. Ku, J.Z. Cheng, S.H. Chou, K.T. Wong, A.J. Bard, Electrochemistry
and electrogenerated chemiluminescence of a spirobifluorene-based donor
(triphenylamine) acceptor (2,1,3-benzothiadiazole) molecule and its organic
nanoparticles, J. Am. Chem. Soc. 133 (2011) 5492–5499.
[1] C.W. Tang, S.A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett.
51 (1987) 913–915.
[2] F.C. Chen, T. Yang, M.E. Thompson, J. Kido, High-performance polymer light-
emitting diodes doped with a red phosphorescent iridium complex, Appl. Phys.
Lett. 80 (2002) 2308–2310.
[3] X.H. Zhu, J.B. Peng, Y. Cao, J. Roncali, Solution-processable single-material
molecular emitters for organic light-emitting devices, Chem. Soc. Rev. 40 (2011)
3509–3524.
[4] C. Huang, C.G. Zhen, S.P. Su, K.P. Loh, Z.K. Chen, Solution-processable polyphenyl
phenyl dendron bearing molecules for highly efficient blue light-emitting
diodes, Org. Lett. 7 (2005) 391–394.
[5] C.J. Tonzola, A.P. Kulkarni, A.P. Gifford, W. Kaminsky, S.A. Jenekhe, Blue-light-
emitting oligoquinolines: synthesis, properties, and high-efficiency blue-light-
emitting diodes, Adv. Funct. Mater. 17 (2007) 863–874.
[6] Z.Q. Gao, B.X. Mi, C.H. Chen, K.W. Cheah, Y.K. Cheng, W.S. Wen, High-efficiency
deep blue host for organic light-emitting devices, Appl. Phys. Lett. 90 (2007)
123506–123508.
[7] R. Meerheim, K. Walzer, M. Pfeiffer, K. Leo, Ultrastable and efficient red organic
light emitting diodes with doped transport layers, Appl. Phys. Lett. 89 (2006)
061111–061113.
[8] S. Tang, M.R. Liu, P. Lu, H. Xia, M. Li, Z.Q. Xie, F.Z. Shen, C. Gu, H.P. Wang, B.
Yang, Y.G. Ma, A molecular glass for deep-blue organic light-emitting diodes
comprising a 9,9ꢀ-spirobifluorene core and peripheral carbazole groups, Adv.
Funct. Mater. 17 (2007) 2869–2877.
[33] C. Zhang, Y.J. Zhang, W.Q. Xiang, B. Hu, M. Ouyang, Y. Xu, C. Ma, The construc-
tion of H-shaped fluorescent materials based on building blocks consisting of
triphenylamine and fluorene, Chem. Lett. 39 (2010) 520–521.
[34] P.I. Shih, C.H. Chien, F.I. Wu, C.F. Shu, A novel fluorene-triphenylamine hybrid
that is a highly efficient host material for blue-green-, and red-light-emitting
electrophosphorescent devices, Adv. Funct. Mater. 17 (2007) 3514–3520.
[35] S.H. Ye, J.M. Chen, C.A. Di, Y.Q. Liu, K. Lu, W.P. Wu, C.Y. Du, Y. Liu, Z.G. Shuai,
G. Yu, Phenyl-substituted fluorene-dimer cored anthracene derivatives: highly
fluorescent and stable materials for high performance organic blue- and white-
light-emitting diodes, J. Mater. Chem. 20 (2010) 3186–3194.
[9] H.C. Li, Y.P. Lin, P.T. Chou, Y.M. Cheng, R.S. Liu, Color tuning and highly efficient
blue emitters of finite diphenylamino-containing oligo(arylenevinylene)
derivatives using fluoro substituents, Adv. Funct. Mater. 17 (2007)
520–530.
[10] F. Steuber, J. Staudigel, M. Stoessel, J. Simmerer, A. Winnacker, H. Spreitzer, F.
Weissoertel, J. Salbeck, White light emission from organic LEDs utilizing spiro
compounds with high-temperature stability, Adv. Mater. 12 (2000) 130–133.