electrode was a silver wire in a 0.1 M AgNO3 solution in CH3CN.
Ferrocene was added to the electrolyte solution at the end of
a series of experiments. The ferrocene/ferrocenium (Fc/Fc+)
couple served as the internal standard. The three electrode cell
was connected to a PAR Model 273 potentiostat/galvanostat
(PAR, EG&G, USA) monitored with the ECHEM Software.
Activated Al2O3 was added to the electrolytic solution to remove
excess moisture. All potentials are referred to the SCE electrode
that was calibrated at ꢀ0.405 V vs. Fc/Fc+ system.
IR (ATR, cmꢀ1) n ¼ 3066, 3031, 2953, 2902, 2867, 2832, 1585,
1511, 1494, 1459, 1427, 1402, 1361, 1342, 1243, 1173, 1126.
Acknowledgements
ꢀ
DT thanks the Region Bretagne for a studentship. MR thanks
ꢀ
the Region Bretagne and l’Agence de l’Environnement et de la
^
Maıtrise de l’Energie (ADEME) for a studentship. The OLED
fabrication/characterization has been performed at the ENSCBP
(IMS/UMR CNRS 5218-Bordeaux) and we wish to highly thank
Sokha Khiev and Dr Laurence Vignau for their help and fruitful
discussions.
OLED fabrication and testing
OLEDs were fabricated using the following procedure. Indium-
tin oxide (ITO) substrates on glass from Merck underwent
a solvent ultrasonic cleaning using acetone, ethanol and iso-
propanol followed by a 15 min UV-ozone treatment. A layer of
poly(3,4-ethylene dioxythiophene) doped with poly(styrene
sulfonate) (PEDOT/PSS from Aldrich) was then deposited onto
ITO by spin-coating at 6000 rpm, from a 3 wt% water dispersion
to form a 40 nm thick layer. PEDOT/PSS was subsequently
annealed at 120 ꢁC under vacuum for 40 minutes. This layer
improves hole injection from the ITO to the HOMO level of the
organic material and increases the performances and the lifetime
of the device. Then a layer of 1, 2 or 3 or a NPB (N,N0-di(1-
References
1 M. M. Ling and Z. Bao, Chem. Mater., 2004, 16, 4824.
2 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey
and J. L. Bredas, Chem. Rev., 2007, 107, 926.
3 S. Varghese and S. Das, J. Phys. Chem. Lett., 2011, 2, 863.
4 J. E. Anthony, Chem. Rev., 2006, 106, 5028.
5 M. Mazzeo, V. Vitale, F. Della Sala, M. Anni, G. Barbarella,
L. Favaretto, G. Sotgiu and G. Gigli, Adv. Mater., 2005, 17, 34.
6 Y. Liu, M. Nishiura, Y. Wang and Z. Hou, J. Am. Chem. Soc., 2006,
128, 5592.
7 S. Tao, Y. Zhou, C.-S. Lee, S.-T. Lee, D. Huang and X. Zhang,
J. Mater. Chem., 2008, 18, 3981.
8 L. Duan, J. Qiao, Y. Sun and Y. Qiu, Adv. Mater., 2011, 23, 1137.
9 A. L. Fischer, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce
and M. C. Petty, Chem. Mater., 2011, 23, 1640.
10 H. Jiang, Macromol. Rapid Commun., 2010, 31, 2007.
11 J. Huang, J.-H. Su, X. Li, M.-K. Lam, K.-M. Fung, H.-H. Fan,
K.-W. Cheah, C. H. Chen and H. Tian, J. Mater. Chem., 2011, 21,
2957.
12 D. Thirion, J. Rault-Berthelot, L. Vignau and C. Poriel, Org. Lett.,
2011, 13, 4418.
ꢀ
naphthyl)-N,N0-diphenyl-[1,10-biphenyl]-4,40-diamine)
layer
followed by a layer of 1, 2 or 3 were thermally evaporated under
vacuum (ca. 10ꢀ6 mbar). The layer thickness was monitored in
situ during the evaporation via a piezoelectric quartz. Calcium
cathodes (200 nm) were evaporated through a shadow mask. The
OLEDs were then stored and characterized under inert atmo-
sphere in a nitrogen glove box ([O2] and [H2O] < 1 ppm).
Current–voltage–luminance (I–V–L) curves were recorded using
a Keithley 4200 SCS. Light emission was collected using a cali-
brated photodiode. Electroluminescence spectra were measured
with a CCD spectrometer (Ocean Optics HR 2000).
ꢁ
13 N. Cocherel, C. Poriel, J. Rault-Berthelot, F. Barriere, N. Audebrand,
A. M. Z. Slawin and L. Vignau, Chem.–Eur. J., 2008, 14, 11328.
ꢁ
14 D. Thirion, C. Poriel, R. Metivier, J. Rault-Berthelot, F. Barriere and
ꢀ
O. Jeannin, Chem.–Eur. J., 2011, 17, 10272.
ꢁ
ꢀ
15 D. Thirion, C. Poriel, F. Barriere, R. Metivier, O. Jeannin and
J. Rault-Berthelot, Org. Lett., 2009, 11, 4794.
3: 3,4,5-Trimethoxyphenyl boronic acid (140 mg, 0.65 mmol),
DSF(t-Bu)4-IF(Br)2 (250 mg, 0.27 mmol), Pd2dba3 (24 mg, 0.03
mmol) and tri-tert-butyl phosphine (20 mL, 0.08 mmol) were
dissolved in toluene (250 mL) under an argon atmosphere.
K2CO3 (100 mg, 0.68 mmol) dissolved in water was added and
the mixture was stirred at 100 ꢁC for 15 hours and, after cooling,
poured into a saturated ammonium chloride solution. Ethyl
acetate was added, the different layers separated and the residual
aqueous solution was extracted with dichloromethane. The
combined extracts were dried (MgSO4), evaporated in vacuo and
purified by column chromatography on silica gel, eluting with
light petroleum–ethyl acetate 8 : 2. The title compound 3
(165 mg, 55%) was afforded as a colorless solid. Mp (hexane) >
300 ꢁC; 1H NMR (300 MHz, CD2Cl2) d 7.83 (4H, dd, J ¼ 8.1 Hz,
J ¼ 0.6 Hz, ArH), 7.65 (2H, d, J ¼ 8.1 Hz, ArH), 7.51–7.44 (6H,
m, ArH), 7.19 (2H, s, ArH), 6.85 (2H, d, J ¼ 1.3 Hz, ArH), 6.79
(4H, d, J ¼ 1.4 Hz, ArH), 6.56 (4H, s, ArH), 3.75 (12H, s, Me),
3.71 (6H, s, Me), 1.17 (36H, s, Me); 13C NMR (75 MHz, CD2Cl2)
d 153.8 (C), 151.4 (C), 150.9 (C), 150.5 (C), 149.4 (C), 141.7 (C),
141.5 (C), 141.0 (C), 139.8 (C), 138.1 (C), 137.2 (C), 127.0 (CH),
125.4 (CH), 122.5 (CH), 121.0 (CH), 120.6 (CH), 119.7 (CH),
115.7 (CH), 104.8 (CH), 66.7 (Cspiro), 60.8 (OMe), 56.5 (OMe),
35.1 (CMe), 31.6 (Me); HRMS (ESI+, CH2Cl2 : CH3OH 8 : 2):
(found: [M + Na]+, 1133.5690; C78H78O6Na required 1133.5691);
ꢁ
16 C. Poriel, J. Rault-Berthelot, D. Thirion, F. Barriere and L. Vignau,
Chem.–Eur. J., 2011, 50, 14031.
17 G. Zhang, H.-H. Chou, X. Jiang, P. Sun, C.-H. Cheng, Y. Ooyama
and Y. Harima, Org. Electron., 2010, 11, 632.
18 B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson and
S. R. Forrest, Adv. Mater., 2002, 14, 1032.
19 E. L. Williams, K. Haavisto, J. Li and G. E. Jabbour, Adv. Mater.,
2007, 19, 197.
20 V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander,
P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and
M. E. Thompson, New J. Chem., 2002, 26, 1171.
ꢁ
21 C. Poriel, F. Barriere, D. Thirion and J. Rault-Berthelot, Chem.–Eur.
J., 2009, 15, 13304.
€
22 J. Salbeck, N. Yu, J. Bauer, F. Weissortel and H. Bestgen, Synth.
Met., 1997, 91, 209.
23 J. Salbeck, F. Weissortel and J. Bauer, Macromol. Symp., 1997, 125,
€
121.
24 T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker and
J. Salbeck, Chem. Rev., 2007, 107, 1011.
25 D. Thirion, C. Poriel, J. Rault-Berthelot, F. Barriere and O. Jeannin,
ꢁ
Chem.–Eur. J., 2010, 16, 13646.
26 C. Poriel, J.-J. Liang, J. Rault-Berthelot, F. Barriere, N. Cocherel,
ꢁ
A. M. Z. Slawin, D. Horhant, M. Virboul, G. Alcaraz,
N. Audebrand, L. Vignau, N. Huby, G. Wantz and L. Hirsch,
Chem.–Eur. J., 2007, 13, 10055.
27 S. Merlet, M. Birau and Z. Y. Wang, Org. Lett., 2002, 4, 2157.
28 T. Hadizad, J. Zhang, D. Yan, Z. Y. Wang, J. P. M. Serbena,
€
M. S. Meruvia and I. A. Hummelgen, J. Mater. Sci.: Mater.
Electron., 2007, 18, 903.
29 T. Fuhrmann and J. Salbeck, Adv. Photochem., 2002, 27, 83.
7156 | J. Mater. Chem., 2012, 22, 7149–7157
This journal is ª The Royal Society of Chemistry 2012