.
Angewandte
Communications
[3] N. R. Rose, M. A. McDonough, O. N. King, A. Kawamura, C. J.
[5] J. Yang, A. M. Jubb, L. Pike, F. M. Buffa, H. Turley, D. Baban, R.
[6] P. A. Cloos, J. Christensen, K. Agger, A. Maiolica, J. Rappsilber,
[7] F. De Santa, M. G. Totaro, E. Prosperini, S. Notarbartolo, G.
[8] J. F. Couture, E. Collazo, P. A. Ortiz-Tello, J. S. Brunzelle, R. C.
[9] Z. Chen, J. Zang, J. Kappler, X. Hong, F. Crawford, Q. Wang, F.
Lan, C. Jiang, J. Whetstine, S. Dai, K. Hansen, Y. Shi, G. Zhang,
[10] S. S. Ng, K. L. Kavanagh, M. A. McDonough, D. Butler, E. S.
Pilka, B. M. Lienard, J. E. Bray, P. Savitsky, O. Gileadi, F.
von Delft, N. R. Rose, J. Offer, J. C. Scheinost, T. Borowski, M.
[11] J. R. Horton, A. K. Upadhyay, H. H. Qi, X. Zhang, Y. Shi, X.
[12] C. Loenarz, W. Ge, M. L. Coleman, N. R. Rose, C. D. O. Cooper,
[13] L. Hillringhaus, W. W. Yue, N. R. Rose, S. S. Ng, C. Gileadi, C.
Loenarz, S. H. Bello, J. E. Bray, C. J. Schofield, U. Oppermann, J.
Biol. Chem. 2011, DOI: 10.1074/jbc.M11.283689.
[14] B. Lohse, A. L. Nielsen, J. B. L. Kristensen, C. Helgstrand,
P. A. C. Cloos, L. Olsen, M. Gajhede, R. P. Clausen, J. L.
[15] X. Luo, Y. Liu, S. Kubicek, J. Myllyharju, A. Tumber, S. Ng,
K. H. Che, J. Podoll, T. D. Heightman, U. Oppermann, S. L.
[16] K. H. Chang, O. N. King, A. Tumber, E. C. Y. Woon, T. D.
Heightman, M. A. McDonough, C. J. Schofield, N. R. Rose,
arise from active-site structure coupled to sequence and
methylation state selectivity.
We investigated whether we could design JMJD2 isoform-
group selective inhibitors, using JMJD2A and JMJD2E as
representatives. JMJD2A–C accept both H3K9me3/me2 and
H3K36me3/me2 whereas JMJD2D–E only accept H3K9me3/
me2. We proposed that a H3K36-based inhibitor might select
for
JMJD2A
over
JMJD2E.
Modeling
of
a
JMJD2A:H3K36me3 structure suggests cross-linking of 1
with Pro38 of H3K36me3 (31–41) could be achieved (Fig-
ure S7). Synthesis of crossed-linked compound 9 was carried
out by thiol–ene coupling of an O-allylhydroxyproline-
containing peptide 8 with 1 (Scheme 1b). 9 demonstrated
60-fold selectivity for JMJD2A (IC50 = 1.5 mm, Tm shift =
5.88C) over JMJD2E (IC50 = 91 mm, Tm shift < 18C) and 9
did not bind to JMJD2E by non-denaturing ESI-MS. There is
little or no inhibitory activity or Tm shift of 9 against the other
tested JmjC subfamilies (Figure 3b and S6b). Notably, 9
showed > 35-fold selectivity against FBXL11 (IC50 = 55 mm,
Tm shift = 0.98C) and > 650-fold selectivity against PHF8
(IC50 > 1 mm, Tm shift = À0.38C).
Overall the results provide proof of principle that
selective inhibition of not only JmjC subfamilies, but also
isoform subgroups, is achievable by utilizing both 2OG and
substrate binding sites. With use of an appropriately func-
tional inhibitor, the cross-linking approach should be appli-
cable to other 2OG oxygenase subfamilies. By exploiting the
inherent substrate selectivity of the JmjC enzymes, compound
6, which is based on H3K9me3, exhibits a high degree of
selectivity and potency for the JMJD2 over other JmjC
subfamilies. Discrimination against human 2OG oxygenases
should be possible as shown by a lack of inhibition against
PHD2 and FIH. Importantly, isoform-subgroup selectivity
could also be achieved using this strategy, as demonstrated by
9 which is selective for JMJD2A over JMJD2E. It is likely
that the approach outlined here will be applicable to related
histone demethylases, and, more widely, other 2OG oxygen-
ases. The combined results, including crystallographic analy-
ses, should provide a basis for the development of potent and
selective JmjC inhibitors, suitable for use as functional probes
in cells and, possibly, for clinical use.
[17] N. R. Rose, E. C. Y. Woon, G. L. Kingham, O. N. F. King, J.
´
Mecinovic, I. J. Clifton, S. S. Ng, J. Talib-Hardy, U. Oppermann,
´
[18] N. R. Rose, S. S. Ng, J. Mecinovic, B. M. Liꢁnard, S. H. Bello, Z.
Sun, M. A. McDonough, U. Oppermann, C. J. Schofield, J. Med.
[19] S. Hamada, T. Suzuki, K. Mino, K. Koseki, F. Oehme, I. Flamme,
H. Ozasa, Y. Itoh, D. Ogasawara, H. Komaarashi, A. Kato, H.
Tsumoto, H. Nakagawa, M. Hasegawa, R. Sasaki, T. Mizukami,
[20] J. R. Whetstine, A. Nottke, F. Lan, M. Huarte, S. Smolikov, Z.
Chen, E. Spooner, E. Li, G. Zhang, M. Colaiacovo, Y. Shi, Cell
Experimental Section
Experimental details, including syntheses and characterizations, ESI-
MS methods, thermal shift and inhibition assays, protein purifications,
crystallization and structure solutions, are given in the Supporting
Information. The coordinates for JMJD2A in complex with T11C and
DNOC 1 is deposited as PDB ID 3U4S.
[21] R. Sekirnik, N. R. Rose, A. Thalhammer, P. T. Seden, J.
´
[22] B. M. R. Liꢁnard, R. Hꢂting, P. Lassaux, M. Galleni, J.-M. Frꢃre,
C. J. Schofield, J. Med. Chem. 2008, 51, 684 – 688.
Received: November 7, 2011
Published online: January 12, 2012
Keywords: 2-oxoglutarate · epigenetics ·
histone lysine demethylases · oxygenases · thiol–ene reaction
[26] A. Kawamura, A. Tumber, N. R. Rose, O. N. King, M. Daniel, U.
.
1634
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2012, 51, 1631 –1634