Organic Letters
Letter
by Wittig alkenylation and acetylation according to the method
described in the literature.14,18
To gain insight into the mechanism of this cobalt-
bisoxazoline-catalyzed cross-coupling, radical clock experi-
ments were performed (Scheme 4). The ring-opened product
Lifeng Wang − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Gucheng Yuan − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Shikuo Liu − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Xiao Sun − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Chaonan Yuan − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Yuxiong Yang − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Qinghua Bian − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Min Wang − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
Scheme 4. Cobalt-Catalyzed Reaction of Radical Probes 10
and 12 with Isobutenyl Magnesium Bromide
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
11 was obtained in 51% yield when α-bromocyclopropyl ester
10 was reacted with isobutenyl magnesium bromide (2a).
However, another radical probe 12, an α-bromo ester bearing a
pendant olefin, afforded the mixtures of the cyclized cross-
coupling product 13 and direct cross-coupling product 14 in
53% yield (85:15 13:14), which was similar to the nickel-
catalyzed enantioselective Negishi reaction of α-bromosulfo-
namide.7c These results suggest that this Kumada enantiose-
lective alkenylation mainly occurs via a radical intermediate
consistent with other cobalt-catalyzed cross-coupling of alkyl
halides.12,19
In conclusion, we have developed the first catalytic
asymmetric Kumada cross-coupling of organic halides with
alkenyl Grignard reagents. Various alkenyl Grignard reagents
were coupled with 34 different α-bromo esters to afford highly
enantioenriched α-alkyl-β,γ-unsaturated esters. Furthermore,
this enantioselective Kumada alkenylation could be applied to
the formal synthesis of the California red scale pheromone, and
preliminary mechanistic investigations support the intermedi-
acy of radicals.
ACKNOWLEDGMENTS
■
The authors thank the National Key Technology Research and
Development Program of China (2017YFD0201404) for
financial support.
REFERENCES
■
(1) (a) Dunkelblum, E.; Mendel, Z.; Gries, G.; Gries, R.; Zegelman,
L.; Hassner, A.; Mori, K. Bioorg. Med. Chem. 1996, 4, 489. (b) Trost,
B. M.; Burns, A. C.; Bartlett, M. J.; Tautz, T.; Weiss, A. H. J. Am.
Chem. Soc. 2012, 134, 1474. (c) Hesse, M. J.; Butts, C. P.; Willis, C.
L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2012, 51, 12444. (d) Zhou,
Y.; Yang, P.; Li, S.; Wang, L.; Yin, J.; Zhong, J.; Dong, Y.; Liu, S.;
Wang, M.; Bian, Q. Tetrahedron: Asymmetry 2017, 28, 338.
(e) Murray, L. A. M.; Fallon, T.; Sumby, C. J.; George, J. H. Org.
Lett. 2019, 21, 8312. (f) Itoh, H.; Inoue, M. Chem. Rev. 2019, 119,
10002. (g) Zhang, K.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019,
55, 8716.
(2) (a) Nunomoto, S.; Kawakami, Y.; Yamashita, Y. Bull. Chem. Soc.
Jpn. 1981, 54, 2831. (b) Nunomoto, S.; Kawakami, Y.; Yamashita, Y.
J. Org. Chem. 1983, 48, 1912. (c) Ohmiya, H.; Yorimitsu, H.; Oshima,
K. Org. Lett. 2006, 8, 3093. (d) Cahiez, G.; Duplais, C.; Moyeux, A.
Org. Lett. 2007, 9, 3253. (e) Guerinot, A.; Reymond, S.; Cossy, J.
Angew. Chem., Int. Ed. 2007, 46, 6521. (f) Shirakawa, E.; Imazaki, Y.;
Hayashi, T. Chem. Lett. 2008, 37, 654.
(3) (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527.
(b) Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 82.
(4) (a) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979,
866. (b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979,
20, 3437. (c) Miyaura, N.; Yano, T.; Suzuki, A. Tetrahedron Lett.
1980, 21, 2865. (d) Charette, A. B.; Giroux, A. J. Org. Chem. 1996, 61,
8718.
(5) (a) Shimizu, R.; Fuchikami, T. Tetrahedron Lett. 1996, 37, 8405.
(b) Luh, T.-Y.; Leung, M.-k.; Wong, K.-T. Chem. Rev. 2000, 100,
3187. (c) Menzel, K.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 3718.
(6) Dai, X.; Strotman, N. A.; Fu, G. C. J. Am. Chem. Soc. 2008, 130,
3302.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
Experimental procedures, optimization, characterization
1
data, H and 13C NMR spectra, and HPLC chromato-
grams of the products. (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Jiangchun Zhong − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China;
(7) (a) Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 5010.
(b) Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102. (c) Choi, J.;
Martin-Gago, P.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 12161.
(d) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775.
(8) Schafer, P.; Sidera, M.; Palacin, T.; Fletcher, S. P. Chem.
Commun. 2017, 53, 12499.
Authors
Yun Zhou − Department of Applied Chemistry, China
Agricultural University, Beijing 100193, P. R. China
D
Org. Lett. XXXX, XXX, XXX−XXX