describe the metal-free, iodine(III) oxidant-mediated
C(sp2)ꢀC(sp2) formation in the construction of
heterocycles.7
there are few examples describing the construction of
oxindole rings from anilide derivatives via C(sp2)ꢀC(sp3)
bond formation by using iodine(III) reagents as the sole
oxidant.7d We report herein a novel approach for construct-
ing the naturally occurring and biologically important
3-hydroxy-2-oxindole11 and spirooxindole12 skeletons via
PIFA-mediated tandem oxidation of anilide derivatives.
In our previous work, we successfully realized the for-
mation of the indole framework (C) by PIDA-mediated
oxidative ring closure of N-aryl enamine compounds (A),
in which the NH was proposed to be oxidized by PIDA
involving a NꢀI intermediate B (Scheme 1, eq 1).7c Inspired
by this, we envisaged that the enol form tautomer of anilide
derivatives D may very well undergo a similar process in the
presence of an iodine(III) oxidant but via an OꢀI inter-
mediate E to realize a C(sp2)ꢀC(sp2) bond formation and
give the oxindole compounds (Scheme 1, eq 2).
Scheme 1. Proposed Route to Access Oxindoles Based on the
Previously Reported PIDA-Mediated Synthesis of Indoles
The oxindole skeleton is widely found in natural prod-
ucts and pharmaceutically active compounds.8 Anilide
derivatives have been vastly applied as substrates in the
syntheses of oxindoles via transition-metal-catalyzed and -
mediated processes through CꢀC bond formation be-
tween C(3)ꢀC(3a).9 The employment of PhI(OAc)2 along
with stoichiometric I2 on N-alkyl-N-arylacrylamide deri-
vatives has provided an alternative metal-free access to this
important type of heterocycle, with concurrent introduc-
tion of two iodine atoms.10 To the best of our knowledge,
Table 1. Optimization of Reaction Conditionsa
concn
t
time
(h)
yield
(%)b
entry
oxidant
solvent
(mol/L)
(°C)
1c
2
PIDA
PIDA
PIFA
PhIO
PIFA
PIFA
PIFA
PIFA
PIFA
PIFA
PIFA
PIFA
PIFA
DCE
DCE
DCE
DCE
MeCN
toluene
EtOH
EtOAc
TFE
0.20
0.20
0.20
0.05
0.20
0.20
0.20
0.20
0.20
0.20
0.10
0.05
0.05
60
60
60
rt
6
4
3
24
5
5
5
5
1
1
1
1
1
23
44
55
22
60
50
20
45
60
67
75
83
50
(7) Selected examples: (a) Kita, Y.; Tohma, H.; Hatanaka, K.;
Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Okas, S. J. Am. Chem.
Soc. 1994, 116, 3684. (b) Arisawa, M.; Ramesh, N. G.; Nakajima, M.;
Tohma, H.; Kita, Y. J. Org. Chem. 2001, 66, 59. (c) Yu, W.; Du, Y.;
Zhao, K. Org. Lett. 2009, 11, 2417. (d) Liang, J.; Chen, J.; Du, F.; Zeng,
X.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 2820. (e) Ye, Y.; Zheng, C.;
Fan, R. Org. Lett. 2009, 11, 3156.
(8) (a) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(b) Trost, B.; Brennan, M. K. Synthesis 2009, 3003. (c) Zhou, F.; Liu,
Y. L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381. (d) Millemaggi, A.;
Taylor, R. J. K. Eur. J. Org. Chem. 2010, 4527.
3
4
5
60
60
60
60
60
rt
6
7
8
9
10
11
12
13d
TFE
(9) For recent reviews, see: (a) Klein, J. E. M. N.; Taylor, R. J. K.
Eur. J. Org. Chem. 2011, 6821. For selected examples, see: (b) Ashimori,
A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998,
120, 6477. (c) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.
TFE
rt
TFE
rt
TFE
0ꢀrt
€
(d) Kundig, E. P.; Seidel, T. M.; Jia, Y.; Bernardinelli, G. Angew. Chem.,
a Reaction conditions: 1a (1.0 mmol), oxidant (2.2 mmol) in solvent
Int. Ed. 2007, 46, 8484. (e) Marsden, S. P.; Watson, E. L.; Raw, S. A. Org.
Lett. 2008, 10, 2905. (f) Ruck, R. T.; Huffman, M. A.; Kim, M. M.;
Shevlin, M.; Kandur, W. V.; Davies, I. W. Angew. Chem., Int. Ed. 2008,
unless otherwise stated. b Isolated yields. c 1.3 equiv of PIDA was used.
d BF3 Et2O (10 mol %) was added.
3
€
47, 4711. (g) Jia, Y. X.; Kundig, E. P. Angew. Chem., Int. Ed. 2009, 48,
1636. (h) Ueda, S.; Okada, T.; Nagasawa, H. Chem. Commun. 2010, 46,
2462. (i) Zhu, J.; Zhang, W.; Zhang, L.; Liu, J.; Zheng, J.; Hu, J. J. Org.
Chem. 2010, 75, 5505. (j) Klein, J. E. M. N.; Perry, A.; Pugh, D. S.;
Taylor, R. J. K. Org. Lett. 2010, 12, 3446.
(10) Wei, H. L.; Piou, T.; Dufour, J.; Neuville, L.; Zhu, J. Org. Lett.
2011, 13, 2244.
Ethyl 3-(methyl (phenyl)amino)-3-oxo-propanoate 1a,
readily prepared via condensation of N-methylaniline with
monoethyl malonate,13 was chosen as the model substrate
to probe the feasibility of the proposed conversion. We
were pleased to find that the reaction of 1a with PIDA,
under the conditions for the conversion of A to C, success-
fully afforded 3-hydroxy-2-oxindole 2a (Table 1, entry 1),
which implies that not only the expected CꢀC bond
formation occurred but also a second oxidative hydroxyla-
tion was also realized. Since at least 2 equiv of the oxidant
were required for the process, the dosage of PIDA was
increased from 1.3 to 2.2 equiv, and the yield was raised
accordingly (Table 1, entry 2). Switching PIDA to other
(11) For recent reviews, see: (a) Peddibhotla, S. Curr. Bioact. Compd.
2009, 5, 20. For selected examples, see: (b) Tomita, D.; Yamatsugu, K.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946. (c) Guo,
Q.; Bhanushali, M.; Zhao, C. G. Angew. Chem., Int. Ed. 2010, 49, 9460.
€
(d) Jia, Y. X.; Katayev, D.; Kundig, E. P. Chem. Commun. 2010, 46, 130.
(e) Liu, Y. L.; Wang, B. L.; Cao, J. J.; Chen, L.; Zhang, Y. X.; Wang, C.;
Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176. (f) Gorokhovik, I.;
Neuville, L.; Zhu, J. Org. Lett. 2011, 13, 5536.
(12) For selected examples, see: (a) Trost, B. M.; Cramer, N.;
Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396. (b) Bencivenni,
G.; Wu, L. Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M. P.;
Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200.
(c) Deppermann, N.; Thomanek, H.; Prenzel, A. H. G. P.; Maison, W.
J. Org. Chem. 2010, 75, 5994. (d) Wang, L. L.; Peng, L.; Bai, J. F.; Jia,
L. N.; Luo, X. Y.; Huang, Q. C.; Xu, X. Y.; Wang, L. X. Chem. Commun.
2011, 47, 5593. (e) Hande, S. M.; Nakajima, M.; Kamisaki, H.; Tsukano,
C.; Takemoto, Y. Org. Lett. 2011, 13, 1828.
(13) Wee, A. G. H.; McLeod, D. D. Heterocycles 2000, 53, 637.
Org. Lett., Vol. 14, No. 9, 2012
2211