A R T I C L E S
Liu et al.
Table 1. Negishi Coupling of ArI with PhZnCla
almost no well-accepted mechanisms. Understanding these
mechanisms will help to optimize the catalytic cross-coupling
toward the desired reaction pathway.
While oxidative addition and reductive elimination of Pd-
catalyzed coupling reactions have been extensively studied both
experimentally and theoretically,7,20-46 the transmetalation
reaction involving Ar1-Pd-Ar2 has only been sparsely
studied.47,48 In this paper, we report an experimental and
yield %b
entry
R
4a
5
6
1
2
3
4
5
6
7
8
9
2-CO2Et
4-CO2Et
2-CONMe2
1a
1c
1d
1e
1f
1g
1h
1i
76
trace
39
70
0
38
60
19
0
20
trace
17
18
99c
61
(10) Bumagin, N. A.; Ponomarev, A. B.; Beletskaya, I. P. Zh. Org. Khim.
1987, 23, 1354–1364.
2-CONHBu
2-MeO
50
40
29
65c
86c
79
(11) Bumagin, N. A.; Ponomarev, A. B.; Beletskaya, I. P. Zh. Org. Khim.
1987, 23, 1345–1353.
4-MeO
13c,d
14
2-i Pr
(12) Organ, M. G.; Ghasemi, H.; Valente, C. Tetrahedron 2004, 60, 9453–
9461.
(13) Okamoto, Y.; Yoshioka, K.; Yamana, T.; Mori, H. J. Organomet.
Chem. 1989, 369, 285–290.
(14) Negishi, E.; Takahashi, T.; Akiyoshi, K. J. Organomet. Chem. 1987,
334, 181–194.
(15) Bumagin, N. A.; Ponomarev, A. B.; Beletskaya, I. P. J. Organomet.
Chem. 1985, 291, 129–132.
4-i Pr
trace
22
99
77
2,4,6-trimethyl
1j
a The reactions were conducted with 0.5 mmol of 1, 1 mmol of 2a,
and 3 mol % of PdCl2(dppf) in THF at 60 °C for 2 h. b The yield was
determined by GC. c Isolated yield. d 4,4′-Dimethoxybiphenyl (7) was
detected.
(16) Tsai, F.-Y.; Lin, B.-N.; Chen, M.-J.; Mou, C.-Y.; Liu, S.-T. Tetra-
hedron 2007, 63, 4304–4309.
(17) Lau, K. C. Y.; Chiu, P. Tetrahedron Lett. 2007, 48, 1813–1816.
(18) Coelho, A. V.; de Souza, A. L. F.; de Lima, P. G.; Wardell, J. L.;
Antunes, O. A. C. Tetrahedron Lett. 2007, 48, 7671–7674.
(19) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Correa, M.; Zorzan, D. Eur.
J. Org. Chem. 2003, 4080–4086.
theoretical study of the Pd-catalyzed Negishi coupling reaction
of Ar1I with Ar2ZnCl. This study provides insight into the
transmetalation of Negishi coupling and leads to the develop-
ment of a strategy that maximizes the selectivity toward cross-
coupling products. Here we report these results and this new
strategy.
(20) Nova, A.; Ujaque, G.; Maseras, F.; Lledos, A.; Espinet, P. J. Am.
Chem. Soc. 2006, 128, 14571–14578.
(21) Nilsson, P.; Puxty, G.; Wendt, O. F. Organometallics 2006, 25, 1285–
1292.
Results and Discussion
(22) Ariafard, A.; Lin, Z.; Fairlamb, I. J. S. Organometallics 2006, 25,
5788–5794.
1. Observation of Formation of Dehalogenation and Homo-
coupling Side Products. During the course of studying the Negishi
coupling reaction using diene ligand 3,49 we examined the
reaction of ethyl o-iodobenzoate (1a) with phenylzinc chloride
(2a) as shown in eq 1. Although this is usually regarded as a
“standard” Negishi coupling for biaryl syntheses, surprisingly,
we found only trace amounts of the cross-coupling biaryl
product 6a was formed, and, instead, the major products were
biphenyl 4a and deiodoarylation product 5a. Furthermore, we
noticed that 4a and 5a were formed in almost equal amounts.
We screened 10 additional Pd catalysts and ligands (see Table
S1 in the Supporting Information) and generally found that this
reaction produced considerable levels of homocoupling and
dehalogenation products.
(23) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704–
4734.
(24) Crociani, B.; Antonaroli, S.; Beghetto, V.; Matteoli, U.; Scrivanti, A.
Dalton Trans. 2003, 2194–2202.
(25) Ricci, A.; Angelucci, F.; Bassetti, M.; Lo Sterzo, C. J. Am. Chem.
Soc. 2002, 124, 1060–1071.
(26) Casares, J. A.; Espinet, P.; Salas, G. Chem.-Eur. J. 2002, 8, 4843–
4853.
(27) Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 949–957.
(28) Casado, A. L.; Casares, J. A.; Espinet, P. Organometallics 1997, 16,
5730–5736.
(29) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598–11599.
(30) Perez-Temprano, M. H.; Nova, A.; Casares, J. A.; Espinet, P. J. Am.
Chem. Soc. 2008, 130, 10518–10520.
(31) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2003,
42, 5749–5752.
(32) Goossen, L. J.; Koley, D.; Hermann, H.; Thiel, W. Chem. Commun.
2004, 2141–2143.
(33) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Eur. J. Inorg. Chem.
2007, 5390–5399.
(34) Surawatanawong, P.; Fan, Y.; Hall, M. B. J. Organomet. Chem. 2008,
693, 1552–1563.
(35) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem.
Soc. 2005, 127, 9298–9307.
(36) Henriksen, S. T.; Norrby, P.-O.; Kaukoranta, P.; Andersson, P. G.
J. Am. Chem. Soc. 2008, 130, 10414–10421.
(37) Kozuch, S.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 3355–3365.
(38) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu,
Y.-D. J. Am. Chem. Soc. 2008, 130, 14362–14363.
(39) Ahlquist, M.; Fristrup, P.; Tanner, D.; Norrby, P.-O. Organometallics
2006, 25, 2066–2073.
(40) Ahlquist, M.; Norrby, P.-O. Organometallics 2007, 26, 550–553.
(41) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Organometallics 2005,
24, 715–723.
(42) Braga, A. A. C.; Ujaque, G.; Maseras, F. Organometallics 2006, 25,
3647–3658.
To further clarify this trend, reactions exploring different aryl
iodide electrophiles with phenylzinc chloride 2a using
PdCl2(dppf) as the catalyst were examined, and the results were
presented in Table 1. Compared with ethyl o-iodobenzoate 1a,
(43) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. Organometallics
2005, 24, 2398–2410.
(44) Li, Z.; Fu, Y.; Guo, Q.-X.; Liu, L. Organometallics 2008, 27, 4043–
4049.
(45) Lucassen, A. C. B.; Shimon, L. J. W.; Van der Boom, M. E.
Organometallics 2006, 25, 3308–3310.
(48) Cardenas, D. J.; Martin-Matute, B.; Echavarren, A. M. J. Am. Chem.
Soc. 2006, 128, 5033–5040.
(46) Senn, H. M.; Ziegler, T. Organometallics 2004, 23, 2980–2988.
(47) Ozawa, F.; Fujimori, M.; Yamamoto, T.; Yamamoto, A. Organome-
tallics 1986, 5, 2144–2149.
(49) Liu, Q.; Duan, H.; Luo, X.; Tang, Y.; Li, G.; Huang, R.; Lei, A. AdV.
Synth. Catal. 2008, 350, 1349–1354.
9
10202 J. AM. CHEM. SOC. VOL. 131, NO. 29, 2009