_
I. Acar et al. / Journal of Organometallic Chemistry 708-709 (2012) 65e74
73
[4] F. Yang, S.R. Forrest, ACS Nano 2 (2008) 1022e1032.
complexes (4,5,9 and 10) showed lower Fd values when compared
to the unsubstituted ZnPc in DMSO. The substitution of the
phthalocyanine framework with substituted groups slightly
increased the stability of studies phthalocyanine complexes. The Fd
values of peripheral substituted zinc (II) phthalocyanine complexes
(4 and 5) are lower than non-peripherally substituted counterparts
(9 and 10). So the substitution of phthalocyanine framework with
studied substituents on peripheral position results more stable
phthalocyanine complexes compared to substitution on non-
peripheral position. High degradation of non-peripherally
substituted zinc (II) phthalocyanine complexes (9 and 10) is due
to larger singlet oxygen quantum yields of these compounds.
[5] M.K.R. Fischer, I. Lopez-Duarte, M.M. Wienk, M.V. Martinez-Diaz,
R.A.J. Janssen, P. Bauerle, T. Torres, J. Am. Chem. Soc. 131 (2009) 8669e8676.
[6] M. Durmus¸ , S. Yes¸ ilot, V. Ahsen, New J. Chem. 30 (2006) 675e678.
_
ꢀ
[7] F. Yılmaz, M. Özer, I. Kani, Ö. Bekaroglu, Catal. Lett. 130 (2009) 642e647.
[8] M. Rodriguez,-Mendez, R. Aroca, J.A. DeSaja, Chem. Mater. 5 (1993) 933e937.
[9] A.M. Master, M.E. Rodriguez, M.E. Kenney, N.L. Oleinick, A.S. Gupta, J. Pharm.
Sci. 99 (2010) 2386e2398.
[10] M.E. Rodriguez, P. Zhang, K. Azizuddin, G.B.D. Santos, S. Chiu, L. Xuel,
J.C. Berlin, X. Peng, H. Wu, M. Lam, A.L. Nieminen, M.E. Kenney, N.L. Oleinick,
Photochem. Photobiol. 85 (2009) 1189e1200.
[11] I. Okura, Photosensitization of Porphyrins and Phthalocyanines, Gordon and
Breach Science Publishers, Amsterdam, 2000.
[12] P. Gregory, J. Porphy. Phthalocyan. 4 (2000) 432e437.
[13] K. Daimon, K. Nukada, Y. Sakaguchi, R.A. Igarashi, J. Ima. Sci. Tech. 40 (1996)
249e253.
[14] A. Tracz, T. Makowski, S. Masirek, W. Pisula, Y.H. Geerts, Nanotech. 18 (2007)
48530.
4. Conclusion
[15] S.A. Priola, A. Raines, W.S. Caughey, Science 287 (2000) 1503e1506.
[16] M. Durmus¸ , H. Yaman, C. Göl, V. Ahsen, T. Nyokong, Dyes Pigm. 91 (2011)
153e163.
The novel phthalonitrile derivatives substituted with 2-[2-(1-
naphthyloxy)ethoxy]ethanol (compound 7) and 2-[2-(2-naph-
thyloxy)ethoxy]ethanol (compounds 3 and 8) groups and their
peripherally (complex 5) and non-peripherally (complexes 9 and 10)
zinc (II) phthalocyanine complexes have been synthesized for the
first time in this study. The phthalonitrile compound 2 and its zinc
(II) phthalocyanine complex 4 have been synthesized according to
the literature. The new phthalonitrile compounds and their zinc (II)
phthalocyanine complexes have been characterized by elemental
analysis, UVevis (for phthalocyanine complexes), IR, 1H NMR, 13C
NMR (for phthalonitrile compounds) and ES-MS mass spectros-
copies. All these new phthalocyanine complexes showed excellent
solubility in many organic solvents such as chloroform, dichloro-
methane, toluene, THF, DMF and DMSO. It was concluded from the
investigation of the spectroscopic behavior of these novel
compounds in various solvents that the non-peripherally
substituted zinc (II) phthalocyanine complexes (9 and 10) formed
J-aggregates in non-coordinating solvents such as chloroform,
dichloromethane and toluene as a result of the complementary
coordination of the linker oxygen atom in the substituents of one
molecule to the central zinc metal atom of another molecule. The
formation of J-aggregates among the non-peripherally substituted
zinc (II) Pc molecules was evidenced using by UVeVis and MALDI-
TOF spectroscopic techniques. The J-aggregates among the zinc (II)
Pc molecules were broken up by the addition of a coordinating
solvent such as methanol. The photophysical (fluorescence quantum
yields and lifetimes) and photochemical properties (singlet oxygen
and photodegradation quantum yields) of substituted zinc phtha-
locyanine complexes (4,5,9 and 10) were investigated in DMSO and
compared with unsubstituted zinc (II) phthalocyanine complex. The
production of singlet oxygen is very important for PDT application.
The substituted zinc (II) phthalocyanine complexes (4,5,9 and 10)
showed good singlet oxygen generation, especially non-peripheral
complexes showed higher than unsubstituted zinc (II) phthalocya-
nine complex, gives an indication of the potential of these complexes
as photosensitizer in photocatalytic applications such as PDT of
cancer. The substituted zinc (II) phthalocyanine complexes showed
approximately same stability degradation to light irradiation.
ꢀ
[17] Z. Bıyıklıoglu, H. Kantekin, Dyes Pigm. 80 (2009) 17e21.
[18] A.A. Esenpınar, M. Bulut, Polyhedron 28 (2009) 3129e3137.
[19] E. Ben-Hur, M. Green, A. Prager, R. Kol, I. Rosenthal, Photochem. Photobiol. 46
(1987) 651e656.
[20] I.J. MacDonald, T.J. Dougherty, J. Porphy. Phthalocyan. 5 (2001) 105e129.
[21] D. Phillips, Pure Appl. Chem. 67 (1995) 117e126.
[22] R. Bonnett, Chem. Soc. Rev. 24 (1995) 19e33.
[23] A.C. Tedesco, J.C.G. Rotta, C.N. Lunardi, Curr. Org. Chem. 7 (2003) 187e196.
[24] W. Feast, P.W. Lövenich, H. Puschmann, C. Taliani, Chem. Commun. 5 (2001)
505e506.
[25] H. Yao, M. Omizo, N. Kitamura, Chem. Commun. 9 (2000) 739e740.
[26] Z.Y. Yang, L.H. Gan, S.B. Lei, L.J. Wan, C. Wang, J.Z. Jiang, J. Phys. Chem. B 109
(2005) 19859e19865.
[27] M.V. Martinez-Diaz, M.S. Rodriguez-Morgade, M.C. Feiters, P.J.M. van Kan,
R.J.M. Nolte, J.F. Stoddart, T. Torres, Org. Lett. 2 (2000) 1057e1060.
[28] W.J. Schutte, M. Sluyters-Rehbach, J.H. Sluyters, J. Phys. Chem. 97 (1993)
6069e6073.
[29] E.J. Osburn, L.K. Chau, S.Y. Chen, N. Collins, D.F. O’Brien, N.R. Armstrong,
Langmuir 12 (1996) 4784e4796.
[30] A. Escosura, M.V. Martinez-Diaz, P. Thordarson, A.E. Rowan, R.J.M. Nolte,
T. Torres, J. Am. Chem. Soc. 125 (2003) 12300e12308.
[31] K. Kadish, K.M. Smith, R. Guillard (Eds.), The Porphyrin Handbook, vols. 15-20,
Academic Press, Boston, 2003.
[32] K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. Int. Ed. 44
(2005) 4763e4766.
[33] J.L. Sessler, J. Jayawickramarajah, A. Gouloumis, G.D. Pantos, T. Torres,
D.M. Guldi, Tetrahedron 62 (2006) 2123e2131.
[34] X. Huang, F.Q. Zhao, Z.Y. Li, L. Huang, Y.W. Tang, F. Zhang, C.H. Tung, Chem.
Lett. 36 (2007) 108e110.
[35] X. Huang, F.Q. Zhao, Z.Y. Li, Y.W. Tang, F.S. Zhang, C.H. Tung, Langmuir 23
(2007) 5167e5172.
[36] M. Morisue, Y. Kobuke, Chem. Eur. J. 14 (2008) 4993e5000.
[37] F.D. Cong, H. Ning, H.F. Yu, X.J. Cui, B. Chen, S.G. Cao, C.Y. Ma, Spectrochim.
Acta A 62 (2005) 394e397.
[38] F.D. Cong, B. Ning,X.G.Du, C.Y. Ma,H.F. Yu, B. Chen,DyesPigm. 66(2005) 149e154.
[39] F. Würthner, T.E. Kaiser, C.R. Saha-Möller, Angew. Chem. 50 (2011)
3376e3410.
[40] F. Cong, J. Li, C. Ma, J. Gao, W. Duan, X. Du, Spectrochim. Acta Part A 71 (2008)
1397e1401.
ꢀ
[41] M. Durmus¸ , Z. Bıyıklıoglu, H. Kantekin, Synth. Met. 159 (2009) 1563e1571.
ꢀ
[42] Z. Bıyıklıoglu, M. Durmus¸ , H. Kantekin, J. Photochem. Photobiol. Chem. A 211
(2010) 32e41.
[43] D.D. Perrin, W.L.F. Armarego, D.R. Perin, Purification of Laboratory Chemicals,
second ed. Pegamon Press, New York, 1985.
[44] C. Bolchi, P. Catalano, L. Fumagalli, M. Gobbi, M. Pallavicini, A. Pedretti, A. Villa,
G. Vistoli, E. Valoti, Bioorg. Med. Chem. 12 (2004) 4937e4951.
[45] R.D. George, A.W. Snow, J. Heterocyc. Chem. 32 (1995) 495e498.
[46] J.G. Young, W. Onyebuagu, J. Org. Chem. 55 (1990) 2155e2159.
ꢀ
[47] I. Acar, Z. Bıyıklıoglu, A. Koca, H. Kantekin, Polyhedron 29 (2010) 1475e1484.
[48] S. Fery-Forgues, D. Lavabre, J. Chem. Ed. 76 (1999) 1260e1264.
[49] M.D. Maree, T. Nyokong, K. Suhling, D. Phillips, J. Porphy. Phthalocyan. 6
(2002) 373e376.
Acknowledgment
[50] A. Ogunsipe, J.Y. Chen, T. Nyokong, New J. Chem. 28 (2004) 822e827.
[51] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, Photochem. Photobiol. 68 (1998)
141e142.
[52] A. Ogunsipe, T. Nyokong, J. Photochem. Photobiol. A: Chem. 173 (2005)
211e220.
This study was supported by the Research Fund of Karadeniz
Technical University, (project no: 2010.101.010.1).
References
[53] I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, J. Photochem. Photobiol.
A: Chem. 140 (2001) 215e222.
[54] N. Kuznetsova, N. Gretsova, E. Kalmkova, E. Makarova, S. Dashkevich,
V. Negrimovskii, O. Kaliya, E. Luk’yanets, Russ. J. Gen. Chem. 70 (2000)
133e140.
[55] W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Roder, G. Schnurpfeil,
J. Porphy. Phthalocyan. 2 (1998) 145e158.
[1] C.C. Leznoff, Lever ABP, Phthalocyanines Properties and Applications, vol. 1,
VCH Publisher, New York, 1989.
[2] V. Parra, M. Bouvet, J. Brunet, M.L. Rodriguez-Mendez, J.A. Saja, Thin Sol. Films
516 (2008) 9012e9019.
[3] M. Bouvet, Anal. Bioanal. Chem. 384 (2006) 366e373.