10.1002/anie.201905870
Angewandte Chemie International Edition
RESEARCH ARTICLE
Bayer, Coord. Chem. Rev. 2014, 268, 59-82; g) D. Dario, G. A.
Carmela, Curr. Org. Chem. 2016, 20, 2552-2590; h) P.-G. Echeverria,
T. Ayad, P. Phansavath, V. Ratovelomanana-Vidal, Synthesis 2016, 48,
2523-2539; i) Asymmetric Catalysis on Industrial Scale: Challenges,
Approaches and Solutions (Eds.: H. U. Blaser, H. J. Federsel), 2nd ed.,
Wiley-VCH, Weinheim, 2010.
[22] a) Q. Xu, Q. Li, X. Zhu, J. Chen, Adv. Synth. Catal. 2013, 355, 73-80; b)
Q.-Q. Li, Z.-F. Xiao, C.-Z. Yao, H.-X. Zheng, Y.-B. Kang, Org. Lett.
2015, 17, 5328-5331; c) X. Li, S. Li, Q. Li, X. Dong, Y. Li, X. Yu, Q. Xu,
Tetrahedron 2016, 72, 264-272; d) X. Ma, C. Su, Q. Xu, Top. Curr.
Chem. 2016, 374, 27.
[23] a) W. v. E. Doering, T. C. Aschner, J. Am. Chem. Soc. 1953, 75, 393-
397; b) R. L. Chowdhury, J. E. Backvall, J. Chem. Soc. Chem.
Commun. 1991, 1063-1064; c) J. R. Miecznikowski, R. H. Crabtree,
Organometallics 2004, 23, 629-631; d) J. Ekström, J. Wettergren, H.
Adolfsson, Adv. Synth. Catal. 2007, 349, 1609-1613; e) A. Ouali, J.-P.
Majoral, A.-M. Caminade, M. Taillefer, ChemCatChem 2009, 1, 504-
509; f) V. Polshettiwar, R. S. Varma, Green Chem. 2009, 11, 1313-
1316; g) L. J. Allen, R. H. Crabtree, Green Chem. 2010, 12, 1362-1364;
h) R. Radhakrishan, D. M. Do, S. Jaenicke, Y. Sasson, G.-K. Chuah,
ACS Catal. 2011, 1, 1631-1636; i) Y.-F. Liang, X.-F. Zhou, S.-Y. Tang,
Y.-B. Huang, Y.-S. Feng, H.-J. Xu, RSC Adv. 2013, 3, 7739-7742; j) J.
Ballester, A.-M. Caminade, J.-P. Majoral, M. Taillefer, A. Ouali, Catal.
Commun. 2014, 47, 58-62; k) D. Wang, C. Deraedt, J. Ruiz, D. Astruc,
J. Mol. Catal. A: Chem. 2015, 400, 14-21; l) H. Bauer, M. Alonso, C.
Färber, H. Elsen, J. Pahl, A. Causero, G. Ballmann, F. De Proft, S.
Harder, Nat. Catal. 2018, 1, 40-47; m) M. Xu, A. R. Jupp, Z.-W. Qu, D.
W. Stephan, Angew. Chem. Int. Ed. 2018, 57, 11050-11054; n) D. C.
Elliott, A. Marti, P. Mauleón, A. Pfaltz, Chem. Eur. J. 2019, 25, 1918-
1922.
[7]
[8]
H. U. Blaser, H. P. Buser, K. Loers, R. Hanreich, H. P. Jalett, E. Jelsch,
B. Pugin, H. D. Schneider, F. Spindler, A. Wagmann, Chimia 1999, 53,
275-280.
a) M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams, Adv. Synth. Catal.
2007, 349, 1555-1575; b) G. Guillena, D. J. Ramón, M. Yus, Chem.
Rev. 2009, 110, 1611-1641; c) T. D. Nixon, M. K. Whittlesey, J. M. J.
Williams, Dalton Trans. 2009, 753-762; d) G. E. Dobereiner, R. H.
Crabtree, Chem. Rev. 2010, 110, 681-703; e) A. J. A. Watson, J. M. J.
Williams, Science 2010, 329, 635-636; f) J. Choi, A. H. R. MacArthur, M.
Brookhart, A. S. Goldman, Chem. Rev. 2011, 111, 1761-1779; g) A. C.
Marr, Catal. Sci. Technol. 2012, 2, 279-287; h) C. Gunanathan, D.
Milstein, Science 2013, 341, 1229712; i) S. Pan, T. Shibata, ACS Catal.
2013, 3, 704-712; j) Y. Obora, ACS Catal. 2014, 4, 3972-3981; k) A.
Nandakumar, S. P. Midya, V. G. Landge, E. Balaraman, Angew. Chem.
Int. Ed. 2015, 54, 11022-11034; l) S. Werkmeister, J. Neumann, K.
Junge, M. Beller, Chem. Eur. J. 2015, 21, 12226-12250; m) Q. Yang, Q.
Wang, Z. Yu, Chem. Soc. Rev. 2015, 44, 2305-2329; n) Y. Nakamura,
A. E. Putra, Y. Oe, T. Ohta, J. Syn. Org. Chem. Jpn. 2016, 74, 1182-
1193; o) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246; p) C.
Wang, J. Xiao, Chem. Commun. 2017, 53, 3399-3411.
[24] The price for the hydrochloride salt of 3z is 8536 rmb/g from J & K
Scientific.
[9]
K.-i. Fujita, T. Fujii, R. Yamaguchi, Org. Lett. 2004, 6, 3525-3528.
[25] a) T. J. Colacot, Chem. Rev. 2003, 103, 3101-3118; b) R. Gómez
Arrayás, J. Adrio, J. C. Carretero, Angew. Chem. Int. Ed. 2006, 45,
7674-7715.
[10] L. Miao, S. C. DiMaggio, H. Shu, M. L. Trudell, Org. Lett. 2009, 11,
1579-1582.
[11] M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C.
Maytum, A. J. A. Watson, J. M. J. Williams, J. Am. Chem. Soc. 2009,
131, 1766-1774.
[26] a) L. Neubert, D. Michalik, S. Bähn, S. Imm, H. Neumann, J. Atzrodt, V.
Derdau, W. Holla, M. Beller, J. Am. Chem. Soc. 2012, 134, 12239-
12244; b) T. Sakamoto, K. Mori, T. Akiyama, Org. Lett. 2012, 14, 3312-
3315; c) W. Bai, K.-H. Lee, S. K. S. Tse, K. W. Chan, Z. Lin, G. Jia,
Organometallics 2015, 34, 3686-3698; d) C. Taglang, L. M. Martínez-
Prieto, I. del Rosal, L. Maron, R. Poteau, K. Philippot, B. Chaudret, S.
Perato, A. Sam Lone, C. Puente, C. Dugave, B. Rousseau, G. Pieters,
Angew. Chem. Int. Ed. 2015, 54, 10474-10477; e) L. V. A. Hale, N. K.
Szymczak, J. Am. Chem. Soc. 2016, 138, 13489-13492; f) Y. Y. Loh, K.
Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti, I. W. Davies,
D. W. C. MacMillan, Science 2017, 358, 1182-1187; g) W. N. Palmer, P.
J. Chirik, ACS Catal. 2017, 7, 5674-5678; h) M. Valero, R. Weck, S.
Güssregen, J. Atzrodt, V. Derdau, Angew. Chem. Int. Ed. 2018, 57,
8159-8163; i) H. Yang, P. G. Dormer, N. R. Rivera, A. J. Hoover,
Angew. Chem. Int. Ed. 2018, 57, 1883-1887.
[12] A. Eka Putra, Y. Oe, T. Ohta, Eur. J. Org. Chem. 2013, 2013, 6146-
6151.
[13] Y. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan, Y. Zhao, Angew. Chem.
Int. Ed. 2014, 53, 1399-1403.
[14] a) Z.-Q. Rong, Y. Zhang, R. H. B. Chua, H.-J. Pan, Y. Zhao, J. Am.
Chem. Soc. 2015, 137, 4944-4947; b) C. S. Lim, T. T. Quach, Y. Zhao,
Angew. Chem. Int. Ed. 2017, 56, 7176-7180; c) L.-C. Yang, Y.-N. Wang,
Y. Zhang, Y. Zhao, ACS Catal. 2017, 7, 93-97; d) S. Tribedi,
Christopher M. Hadad, R. B. Sunoj, Chem Sci. 2018, 9, 6126-6133.
[15] N. J. Oldenhuis, V. M. Dong, Z. Guan, J. Am. Chem. Soc. 2014, 136,
12548-12551.
[16] M. Peña-López, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2016,
55, 7826-7830.
[27] R. Rao, M. P. Shewalkar, R. Nandipati, J. S. Yadav, M. Khagga, D. B.
Shinde, Synth. Commun. 2012, 42, 589-598.
[17] P. Yang, C. Zhang, Y. Ma, C. Zhang, A. Li, B. Tang, J. S. Zhou, Angew.
Chem. Int. Ed. 2017, 56, 14702-14706.
[28] a) C. M. Spencer, S. Noble, Drugs & Aging 1998, 13, 391-411; b) P.-C.
Yan, G.-L. Zhu, J.-H. Xie, X.-D. Zhang, Q.-L. Zhou, Y.-Q. Li, W.-H.
Shen, D.-Q. Che, Org. Proc. Res. Dev. 2013, 17, 307-312.
[29] a) V. N. Wakchaure, P. S. J. Kaib, M. Leutzsch, B. List, Angew. Chem.
Int. Ed. 2015, 54, 11852-11856; b) A. Chelouan, R. Recio, L. G.
Borrego, E. Álvarez, N. Khiar, I. Fernández, Org. Lett. 2016, 18, 3258-
3261.
[18] M. Jacolot, S. Moebs-Sanchez, F. Popowycz, J. Org. Chem. 2018, 83,
9456-9463.
[19] M. Chen, Y. Han, D. Ma, Y. Wang, Z. Lai, J. Sun, Chin. J. Chem. 2018,
36, 587-593. This is an elegant example of organocatalytic N-alkylation
with alcohols via SN1 mechanism.
[20] a) G. Liu, D. A. Cogan, J. A. Ellman, J. Am. Chem. Soc. 1997, 119,
9913-9914; b) D. A. Cogan, G. Liu, K. Kim, B. J. Backes, J. A. Ellman, J.
Am. Chem. Soc. 1998, 120, 8011-8019; c) D. J. Weix, J. A. Ellman, Org.
Lett. 2003, 5, 1317-1320; d) M. Wakayama, J. A. Ellman, J. Org. Chem.
2009, 74, 2646-2650; e) M. T. Robak, M. A. Herbage, J. A. Ellman,
Chem. Rev. 2010, 110, 3600-3740.
[30] a) C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens,
Synthesis 1994, 1994, 1007-1017; b) K. Nishide, M. Node, Chirality
2002, 14, 759-767; c) J. S. Cha, Org. Proc. Res. Dev. 2006, 10, 1032-
1053.
[31] Q. Xu, J. Chen, H. Tian, X. Yuan, S. Li, C. Zhou, J. Liu, Angew. Chem.
Int. Ed. 2014, 53, 225-229.
[21] a) Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Chem. Eur. J. 2015, 21,
9656-9661; b) J. Cheng, M. Zhu, C. Wang, J. Li, X. Jiang, Y. Wei, W.
Tang, D. Xue, J. Xiao, Chem Sci. 2016, 7, 4428-4434; c) X. Jiang, W.
Tang, D. Xue, J. Xiao, C. Wang, ACS Catal. 2017, 7, 1831-1835; d) J.
Li, Y. Liu, W. Tang, D. Xue, C. Li, J. Xiao, C. Wang, Chem. Eur. J. 2017,
23, 14445-14449; e) W. Ma, S. Cui, H. Sun, W. Tang, D. Xue, C. Li, J.
Fan, J. Xiao, C. Wang, Chem. Eur. J. 2018, 24, 13118-13123.
[32] This weakened effect may be due to a preequilibrium between the
ketone/amine and imine, preceding the turnover limiting reduction of the
imine by the alkoxide.
[33] T. Yasuyuki, K. Koji, I. Yoshihisa, H. Tadao, Bull. Chem. Soc. Jpn. 1988,
61, 627-632.
[34] T. P. Tang, J. A. Ellman, J. Org. Chem. 1999, 64, 12-13.
This article is protected by copyright. All rights reserved.