1·(CH3)2CO. To test this assumption we have de-convoluted the
spectrum in Fig. 11 into constituent Gaussian bands using
standard non-linear regression methods; the results are shown in
Fig. S5.† A total of five bands are mandatory in order to provide
a suitable fit of the experimental emission spectrum of the
sample. The Gaussian bands coloured blue, light blue and pink
are centred at 550, 585 and 631 nm and, moreover, decrease
monotonically in intensity as the wavelength increases. This
the difference – the cations stay in position and do not move
when the material is exposed to vapours of small molecules such
as acetonitrile. Or, to put it in another way, if acetonitrile is lost
from the solvate, 1·CH3CN, the cations stay fixed in position
and an open porous crystal structure is obtained.
Acknowledgements
3
profile, as well as the band energies, match that of the MLCT
The authors thank the South African National Research Foun-
dation and the University of KwaZulu-Natal for financial
support. B. P. W. thanks the Department of Labour for a Scarce
Skills bursary.
emission exhibited by 1·CH3CN and 1·(CH3)2CO, see Fig. 8.
The fourth band of interest, coloured green, is centred at 609 nm
with a fwhm value of 1590 cm−1, i.e. it is relatively narrow. This
band is, both in terms of energy and profile, typical of the kind
of emission exhibited by planar complexes of platinum(II)
that have crystal structures containing Pt2 dimers: see for
example [Pt(trpy)Cl]CF3SO3 (λem
References
max
= 625 nm at 77 K),13
1 (a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi
and J. Kim, Nature, 2003, 423, 705; (b) A. K. Cheetham, C. N. R. Rao
and R. K. Feller, Chem. Commun., 2006, 4780; (c) J. W. Steed and
J. L. Atwood, Supramolecular Chemistry, Wiley, Chichester, UK, 2009,
2nd edn, pp. 538–589; (d) S. Kitagawa and R. Matsuda, Coord. Chem.
Rev., 2007, 251, 2490.
2 P. M. Forster and A. K. Cheetham, Top. Catal., 2003, 24, 79.
3 (a) J. L. C. Roswell, A. R. Millward, K. S. Park and O. M. Yaghi, J. Am.
Chem. Soc., 2004, 126, 5666; (b) T. Duren, L. Sarkisov, O. M. Yaghi and
R. Q. Snurr, Langmuir, 2004, 20, 2684; (c) J. L. C. Roswell and
O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4670; (d) J. A. Rood,
B. C. Noll and K. W. Henderson, Inorg. Chem., 2006, 45, 5521.
4 (a) A. de Bettencourt-Dias, Inorg. Chem., 2005, 44, 2734; (b) X. D. Gou,
G. S. Zhu, Q. R. Fang, M. Xue, G. Tian, J. Y. Sun, X. T. Li and
S. L. Qiu, Inorg. Chem., 2005, 44, 3580.
[(2,6-di-(2′-naphthyl)-4-pyridine)Pt2{μ-bis(diphenylphosphino)-
max
methane}] (λem
= 602 nm) and its solvates.46 We therefore
3
assign it as MMLCT in origin. Finally, the fifth band, coloured
red, is very broad and centered at 652 nm. Of course, this band
is reminiscent of the 650 nm band observed in the emission
spectrum of the de-solvated compound, 1, see Fig. 10. We con-
clude that the emission spectrum of 1·CH3OH, though compli-
cated, is understandable in terms of the simultaneous emission
from 3MLCT, 3MMLCT and excimeric 3π–π* excited states.
Conclusions
5 G. Férey, Chem. Mater., 2001, 13, 3084.
The crystal structure of 1 is unusual in that it is porous with an
open framework that is constructed from repeating 2-dimensional
π-stacks of planar [Pt{4′-(Ph)trpy}(NCS)]+ cations interspersed
6 (a) K. T. Holman, A. M. Pivovar, J. A. Swift and M. D. Ward, Acc.
Chem. Res., 2001, 34, 107; (b) O. R. Evans and W. B. Lin, Acc. Chem.
Res., 2002, 35, 511.
7 K. Uemura, K. Saito, S. Kitagawa and H. Kita, J. Am. Chem. Soc., 2006,
128, 16416.
−
with SbF6 anions; far more common are coordination com-
pounds that are porous but where the open structure comprises a
reticular framework of metal ions linked by bridging organic
ligands.1 The π-stacks are stabilised by extended π–π inter-
actions. These involve relatively weak electrostatic forces,9,10 yet
compound 1 reversibly sorbs and de-sorbs small molecules
without disruption of the open framework structure – provided,
of course, that the intermolecular forces between the molecules
and the cations (or anions) are of the weak van der Waals type.
Note that this is not true of the closely-related (parent) com-
pound, [Pt(trpy) (NCS)]SbF6, for which there is no substituent
in the 4′-position of the terpyridyl ligand. This compound is red
(not yellow) and also sorbs and de-sorbs small molecules, in par-
ticular acetonitrile, pyridine and dimethylformamide.24 However,
the sorption–de-sorption process is accompanied by a reversible
red-to-yellow colour change. This colour change can be attribu-
ted to the breaking and making of metallophilic Pt⋯Pt inter-
actions in the solid state.24 The point is that [Pt(trpy)(NCS)]
SbF6 has a space-filling crystal structure that is disrupted on
small molecule sorption: to be precise, the planar [Pt(trpy)
(NCS)]+ cations slide into new positions when molecules are
sorbed or desorbed.24 Clearly this does not apply to the planar
[Pt{4′-(Ph)trpy}(NCS)]+ cations in compound 1 – they hardly
move when molecules such as acetonitrile are reversibly sorbed.
The reason has to do with the 4′-phenyl substituent, in particular
that it participates in a stabilising π–π interaction with the outer
pyridine ring of an adjacent cation, see Fig. 4(C). This inter-
action, not possible for the [Pt(trpy)(NCS)]+ cation, makes all
8 S.-I. Noro, S. Kitagawa, T. Nakamura and T. Wada, Inorg. Chem., 2005,
44, 3960.
9 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.
10 C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885.
11 (a) B. Chatterjee, J. C. Noveron, M. J. E. Resendiz, J. Liu, T. Yamamoto,
D. Parker, M. Cinke, C. V. Nguyen, A. M. Arif and P. J. Stang, J. Am.
Chem. Soc., 2004, 126, 10645; (b) T. Jacobs, J.-A. Gertenbach,
D. Dinabandhu and L. J. Barbour, Aust. J. Chem., 2010, 63, 573;
(c) A. W. Kleij, M. Kuil, D. M. Tooke, M. Lutz, A. L. Spek and
J. N. H. Reek, Chem.–Eur. J., 2005, 11, 4743; (d) S.-S. Sun and
A. J. J. Lees, J. Am. Chem. Soc., 2000, 122, 8956; (e) L. Dobrzanska,
G. O. Lloyd, H. G. Raubenheimer and L. J. Barbour, J. Am. Chem. Soc.,
2005, 127, 13134; (f) L. Dobrzanska, G. O. Lloyd, H. G. Raubenheimer
and L. J. Barbour, J. Am. Chem. Soc., 2006, 128, 698;
(g) L. Dobrzanska, G. O. Lloyd, C. Esterhuysen and L. J. Barbour,
Angew. Chem., Int. Ed., 2006, 45, 5856; (h) S. Belanger, J. T. Hupp,
C. L. Stern, R. V. Slone, D. F. Watson and T. G. Carrell, J. Am. Chem.
Soc., 1999, 121, 557; (i) M. Albrecht, M. Lutz, A. L. Spek and G. van
Koten, Nature, 2000, 406, 970; ( j) Z. Huang, P. S. White and
M. Brookhart, Nature, 2010, 465, 598; (k) C. D. Jones, J. C. Tan and
G. O. Lloyd, Chem. Commun., 2012, 48, 2110.
12 S. P. Anthony, C. Delaney, L. Varughese, L. Wang and S. M. Draper,
CrystEngComm, 2011, 13, 6706.
13 H.-K. Yip, L.-K. Cheng, K.-K. Cheung and C.-M. Che, J. Chem. Soc.,
Dalton Trans., 1993, 2933.
14 J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P. Schaefer
and H. B. Gray, Inorg. Chem., 1995, 34, 4591.
15 H.-S. Lo, S.-K. Yip, N. Zhu and V. W.-W. Yam, Dalton Trans., 2007,
4386.
16 J. S. Field, J.-A. Gertenbach, R. J. Haines, L. P. Ledwaba, N. T. Mashapa,
D. R. McMillin, O. Q. Munro and G. C. Summerton, Dalton Trans.,
2003, 1176.
17 J. S. Field, R. J. Haines, D. R. McMillin and G. C. Summerton, J. Chem.
Soc., Dalton Trans., 2002, 1369.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 5486–5496 | 5495