10.1002/adsc.201900096
Advanced Synthesis & Catalysis
insertion of the nitrile group to yield the
corresponding ketimine complex B. Further, the
above complex B
2010, 18, 6184-6196; g) L. Zhang, X. M. Peng, G.
L. V. Damu, R. X. Geng, C. H. Zhou, Med. Res.
Rev. 2014, 34, 340-437.
[2] a) T. Asselah, N. Boyer, D. Saadoun, M. Martinot-
Peignoux, P. Marcellin, Liver. Int. 2016, 36, 47-57;
b) A. Carbone, B. Parrino, P. Barraja, V. Spano, G.
Cirrincione, P. Diana, A. Maier, G. Kelter, H. H.
Fiebig, Mar. Drugs. 2013, 11, 643-654; c) A.
Carbone, M. Pennati, B. Parrino, A. Lopergolo, P.
Barraja, A. Montalbano, V. Spano, S. Sbarra, V.
Doldi, M. De Cesare, G. Cirrincione, P. Diana, N.
Zaffaroni, J. Med. Chem. 2013, 56, 7060-7072; d)
P. Diana, A. Carbone, P. Barraja, G. Kelter, H. H.
Fiebig, G. Cirrincione, Bioorgan. Med. Chem.
2010, 18, 4524-4529; e) S. Forenza, L. Minale, R.
Riccio, J. Chem. Soc. Chem. Comm. 1971, 18,
1129-1130; f) E. E. Garcia, L. E. Benjamin, R. I.
Fryer, Chem. Soc. Chem. Commun. 1973, 3, 78-79;
g) P. L. McCormack, Drugs. 2015, 75, 515-524; h)
A. Zula, D. Kikelj, J. Ilas, Mini-Rev. Med. Chem.
2013, 13, 1921-1943.
Scheme 3. Proposed Mechanism.
afforded the ketimine intermediate C, and thus
regenerates the Ni(II) catalyst. The ketamine
intermediate C undergoes tautomerization to afford D,
which is followed by intramolecular condensation to
yield the corresponding desired product F.
In summary, an efficient nickel(II)-catalyzed
coupling cascade reaction has been developed to
synthesize structurally diverse 2,4-disubstituted
imidazoles. The reaction involves C−C coupling
followed by intramolecular C−N bond formation. The
method exhibits remarkable selectivity across a broad
substrate scope. Notably, halogen and N-containing
heterocyclic substituents are amenable to the reaction
to further contribute to product diversity. Further
studies are ongoing with respect to extending this
methodology for the synthesis of various heterocycles.
[3] a) M. A. Dufert, K. L. Billingsley, S. L. Buchwald,
J. Am. Chem. Soc. 2013, 135, 12877-12885; b) D.
Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S.
L. Buchwald, Chem. Sci. 2011, 2, 57-68; c) M.
Schnurch, R. Flasik, A. F. Khan, M. Spina, M. D.
Mihovilovic, P. Stanetty, Eur. J. Org. Chem. 2006,
15, 3283-3307; d) Y. Yang, N. J. Oldenhuis, S. L.
Buchwald, Angew. Chem. Int. Edit. 2013, 52, 615-
619; e) F. Bellina, S. Cauteruccio, R. Rossi, J. Org.
Chem. 2007, 72, 8543-8546.
Experimental Section
General procedure for the synthesis of 2,4-disubstituted
imidazoles
Anhydrous toluene (3.0 mL) was added to an over-dried 5
mL sealed tube, equipped with a stirrer bar, containing
aminoacetonitrile 1a (0.6 mmol), phenylboronic acid 2a
(1.2 mmol), Ni(PPh3)2Br2 (10 mol%), 4,4'-di-tert-butyl-
2,2'-bipyridine (10 mol%), and anhydrous Na2SO4 (3.0
mmol). The mixture was stirred at 120 °C for 24 h. After
completion of the reaction, the solvent was removed under
reduced pressure. Thereafter, the mixture was diluted with
EtOAc and washed with brine. The organic layer was dried
over anhydrous Na2SO4 and evaporated under vacuum,
after which the residue was purified by column
[4] J. J. Tan, Y. G. Chen, H. M. Li, N. Yasuda, J. Org.
Chem. 2014, 79, 8871-8876.
[5] a) X. Y. Chen, U. Englert, C. Bolm, Chem-Eur. J.
2015, 21, 13221-13224; b) E. Gopi, T. Kumar, R.
F. S. Menna-Barreto, W. O. Valenca, E. N. da
Silva, I. N. N. Namboothiri, Org. Biomol. Chem.
2015, 13, 9862-9871; c) S. D. Pardeshi, P. A.
Sathe, K. S. Vadagaonkar, L. Melone, A. C.
Chaskar, Synthesis-Stuttgart. 2018, 50, 361-370; d)
N. N. K. Reddy, S. N. Rao, C. Ravi, S. Adimurthy,
Acs. Omega. 2017, 2, 5235-5241.
chromatography
using
2
vol.%
methanol
in
dichloromethane to give the desired product 3a.
Acknowledgements
This work was supported by the National Basic Research
Program of China (973 Program, 2015CB931804), the Science
and the National Natural Science Foundation of China
(81673292). We thank Edanz Group (www.edanzediting.com/ac)
for editing a draft of this manuscript.
[6] P. F. Carneiro, B. Gutmann, R. O. M. A. de Souza,
C. O. Kappe, Acs Sustain Chem. Eng. 2015, 3,
3445-3453.
[7] a) F. F. Fleming, Q. Z. Wang, Chem. Rev. 2003,
103, 2035-2077; b) V. Y. Kukushkin, A. J. L.
Pombeiro, Chem. Rev. 2002, 102, 1771-1802.
References
[8] a) R. C. Larock, Q. P. Tian, A. A. Pletnev, J. Am.
Chem. Soc. 1999, 121, 3238-3239; b) C. X. Zhou,
R. C. Larock, J. Am. Chem. Soc. 2004, 126, 2302-
2303; c) C. X. Zhou, R. C. Larock, J. Org. Chem.
2006, 71, 3551-3558.
[1] a) L. I. Belen'kii, V. N. Gramenitskaya, Y. B.
Evdokimenkova, Adv. Heterocycl. Chem. 2011,
102, 1-137; b) R. W. DeSimone, K. S. Currie, S. A.
Mitchell, J. W. Darrow, D. A. Pippin, Comb. Chem
High. T. Scr. 2004, 7, 473-493; c) Z. Jin, Nat. Prod.
Rep. 2011, 28, 1143-1191; d) V. Polshettiwar, R. S.
Varma, Curr. Opin. Drug. Disc. 2007, 10, 723-
737; e) L. F. Tietze, A. Modi, Med. Res. Rev. 2000,
20, 304-322; f) J. Z. Vlahakis, C. Lazar, I. E.
Crandall, W. A. Szarek, Bioorgan. Med. Chem.
[9] a) B. W. Zhao, X. Y. Lu, Org. Lett. 2006, 8, 5987-
5990; b) B. W. Zhao, X. Y. Lu, Tetrahedron. Lett.
2006, 47, 6765-6768.
[10] a) K. Hu, L. J. Qi, S. L. Yu, T. X. Cheng, X. D.
Wang, Z. J. Li, Y. Z. Xia, J. X. Chen, H. Y. Wu,
4
This article is protected by copyright. All rights reserved.