ACS Combinatorial Science
Research Article
synthesis of bile acid−peptide conjugates linked via triazole moiety.
Org. Biomol. Chem. 2011, 9, 4921−4926.
REFERENCES
■
(1) (a) Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R.
Heterocyclic peptide backbone modifications in an α-helical coiled
coil. J. Am. Chem. Soc. 2004, 126, 15366−15367. (b) Bock, V. D.;
Hiemstra, H.; Maarseveen, J. H. Cu1-catalyzed alkyne-azide “click”
cycloadditions from a mechanistic and synthetic perspective. Eur. J.
Org. Chem. 2005, 51−68. (c) Angell, Y. L.; Burgess, K.
Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions.
Chem. Soc. Rev. 2007, 36, 1674−1689. (d) Pedersen, D. S.; Abell, A.
1,2,3-Triazoles in peptidomimetic chemistry. Eur. J. Org. Chem. 2011,
2399−2411.
(2) Horne, W. S.; Yadav, M. K.; Stout, C.; Ghadiri, M. R.
Heterocyclic peptide backbone modifications in an α-helical coiled
coil. J. Am. Chem. Soc. 2004, 126, 15366−15367.
(3) Miller, N.; Williams, G. M.; Brimble, M. A. Synthesis of fish
antifreeze neoglycopeptides using microwave-assisted “click chemistry.
Org. Lett. 2009, 11, 2409−2412.
(4) Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S. J. A potentially
valuable advance in the synthesis of carbohydrate-based anticancer
vaccines through extended cycloaddition chemistry. J. Org. Chem.
2006, 71, 8244−8249.
(5) Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on
solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-
dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem.
2002, 67, 3057−3064.
(6) Whiting, M.; Tripp, J. C.; Lin, Y. C.; Lindstrom, W.; Olson, A. J.;
Elder, J. H.; Sharpless, K. B.; Fokin, V. V. Rapid discovery and
structure−activity profiling of novel inhibitors of human immunode-
ficiency virus type 1 protease enabled by the copper(I)-catalyzed
synthesis of 1,2,3-triazoles and their further functionalization. J. Med.
Chem. 2006, 49, 7697−7710.
(7) (a) Angelo, N. G.; Arora, P. S. Solution- and solid-phase synthesis
of triazole oligomers that display protein-like functionality. J. Org.
Chem. 2007, 72, 7963−7967. (b) Angelo, N. G.; Arora, P. S.
Nonpeptidic foldamers from amino acids: Synthesis and character-
ization of 1,3-substituted triazole oligomers. J. Am. Chem. Soc. 2005,
127, 17134−17135.
(8) (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.;
Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfieldt, J. Methods for
drug discovery: Development of potent, selective, orally effective
cholecystokinin antagonists. J. Med. Chem. 1988, 31, 2235−2246.
(b) Patchett, A. A.; Nargund, R. P. Privileged structures: an update.
Annu. Rep. Med. Chem. 2000, 35, 289−298. (c) Triggle, D. J. 1,4-
Dihydropyridines as calcium channel ligands and privileged structures.
Cell. Mol. Neurobiol. 2003, 23, 293−303. (d) Poupaert, J.; Carato, P.;
Colacino, E. 2(3H)-Benzoxazolone and bioisosters as “privileged
scaffold” in the design of pharmacological probes. Curr. Med. Chem
2005, 12, 877−885.
(9) (a) Kuijpers, B. M.; Groothuys, S.; Keereweer, A. R.; Quaedflieg,
P. M.; Blaauw, R. H.; Delft, F. L.; Rutjes, F. T. Expedient synthesis of
triazole-linked glycosyl amino acids and peptides. Org. Lett. 2004, 6,
3123−3126. (b) Cantel, S.; Isaad, A. C; Scrima, M.; Levy, J. J.;
DiMarchi, R. D.; Rovero, P.; Halperin, J. A.; D’Ursi, A. M.; Papini, A.
M.; Chorev, M. Synthesis and conformational analysis of a cyclic
peptide obtained via i to i + 4 intramolecular side-chain to side-chain
azide-alkyne 1,3-dipolar cycloaddition. J. Org. Chem. 2008, 73, 5663−
5674.
(10) (a) Beraa, S.; Zhanel, G. G.; Schweizera, F. Evaluation of
amphiphilic aminoglycoside-peptide triazole conjugates as antibacterial
agents. Bioorg. Med. Chem. Lett. 2010, 20, 3031−3035. (b) Bock, V. D.;
Speijer, D.; Hiemstra, H.; Maarseveen, J. H. 1,2,3-Triazoles as peptide
bond isosteres: synthesis and biological evaluation of cyclotetrapeptide
mimics. Org. Biomol. Chem. 2007, 5, 971−975. (c) Nenajdenko, V. G.;
Gulevich, A. V.; Sokolova, N. V.; Mironov, A. V.; Balenkova, E. S.
Chiral isocyanoazides: Efficient bifunctional reagents for bioconjuga-
tion. Eur. J. Org. Chem. 2010, 1445−1449. (d) Sokolova, N. V.;
Latyshev, G. V.; Lukashev, N. V.; Nenajdenko, V. G. Design and
(11) (a) Multicomponent Reactions; Zhu, J. H., Ed; Wiley-VCH:
Weinheim, Germany; 2005 and references therein. (b) Toure, B. B.;
Hall, D. G. Expedient synthesis of triazole-linked glycosyl amino acids
and peptides. Chem. Rev. 2009, 109, 4439−4486. (c) Teimouri, M. B.;
Akbari-Moghaddam, P.; Golbaghi, G. Pseudo-five-component reaction
between 3-formylchromones, Meldrum’s acid, isocyanides and primary
arylamines: Diversity-oriented synthesis of novel chromone-containing
peptidomimetics. ACS Comb. Sci. 2011, 13, 659−666. (d) Granger, B.
A.; Kaneda, K.; Martin, S. F. Libraries of 2,3,4,6,7,11b-hexahydro-1H-
pyrido[2,1-a]isoquinolin-2-amine derivatives via a multicomponent
assembly process/1,3-dipolar cycloaddition strategy. ACS Comb. Sci
2012, 14, 75−79. (e) Zou, Y.; Hu, Y.; Liu, H; Shi, D. H. Rapid and
efficient ultrasound-assisted method for the combinatorial synthesis of
spir[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci
2012, 14, 38−43.
(12) (a) Eelco, R; Rachel, S; Romano, V. A. Orru multicomponent
reaction design in the quest for molecular complexity and diversity.
Angew. Chem., Int. Ed. 2011, 50, 6234−6246. (b) Dhevalapally, B. R.;
Sangeeta, J. Sequential one-pot combination of multi-component and
multi-catalysis cascade reactions: an emerging technology in organic
synthesis. Org. Biomol. Chem. 2011, 9, 1277−1300.
(13) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
A Stepwise Huisgen cycloaddition process: Copper(I)-catalyzed
regioselective “ligation” of azides and terminal alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596−2599. (b) Duval, R.; Kolb, S.; Braud,
E.; Genest, G.; Garbay, C. Rapid discovery of triazolobenzylidene-
thiazolopyrimidines (TBTP) as CDC25 phosphatase inhibitors by
parallel click chemistry and in situ screening. J. Comb. Chem. 2009, 11,
947−950. (c) Fenster, E.; Long, T. R.; Zang, Q.; Hill, D.;
Neuenswander, B.; Lushington, G. H.; Zhou, A.; Santini, C.;
Hanson, P. R. Automated synthesis of a 184-member library of
thiadiazepan-1,1-dioxide-4-ones. ACS Comb. Sci. 2011, 13, 244−250.
(14) (a) Link, A. K.; Tirrell, D. A. Excited-state intramolecular proton
transfer in o-hydroxybiaryls: A new route to dihydroaromatic
compounds. J. Am. Chem. Soc. 2003, 125, 1164−1165. (b) Li, Z.;
Seo, T. S.; Ju, J. Y. 1,3-Dipolar cycloaddition of azides with electron-
deficient alkynes under mild condition in water. Tetrahedron Lett.
2004, 45, 3143−3146.
(15) (a) Constabel, F.; Ugi, I. Repetitive Ugi reactions. Tetrahedron
2001, 57, 5785−5789. (b) David, E. P.; Dinabandhu, N.; Laura, W.;
Ryszard, O.; Jack, J. C. Solid-phase synthesis of five-dimensional
libraries via a tandem Petasis−Ugi multi-component condensation
reaction. Tetrahedron Lett. 2003, 44, 5121−5124. (c) Naskar, D.; Roy,
A.; Seibel, W. L.; West, L.; Portlock, D. E. The synthesis of aza-β-
lactams via tandem Petasis−Ugi multi-component condensation and
1,3-diisopropylcarbodiimide (DIC) condensation reaction. Tetrahe-
dron Lett. 2003, 44, 6297−6300. (d) Paravidino, M.; Scheffelaar, R.;
Schmitz, R. F.; Kanter, F. J. J.; de; Groen, M. B.; Ruijter, E.; Orru, R. V.
A. A Flexible six-component reaction to access constrained
depsipeptides based on a dihydropyridinone core. J. Org. Chem.
2007, 72, 10239−10242. (e) Elders, N.; Born, D.; Hendrickx, L. J. D.;
Timmer, B. J. J.; Krause, A.; Janssen, E.; Kanter, F. J. J.; Ruijter, E.;
Orru, R. V. A. The efficient one-pot reaction of up to eight
components by the union of multicomponent reactions. Angew. Chem.,
Int. Ed. 2009, 48, 5856−5859. (f) Al-Tel, T. H.; Al-Qawasmeh, R. A.;
Voelter, W. Rapid assembly of polyfunctional structures using a one-
pot five-and six-component sequential Groebke−Blackburn/Ugi/
Passerini process. Eur. J. Org. Chem. 2010, 5586−5593.
(16) (a) Krivopalov, V. P.; Shkurko, O. P. 1,2,3-Triazole and its
derivatives. Development of methods for the formation of the triazole
ring. Russ. Chem. Rev. 2005, 74, 339−379. (b) Pokhodylo, N. T.;
Matiychuk, V. S.; Obushak, M. D. One-pot multicomponent synthesis
of 1-aryl-5-methyl-N-R2-1H-1,2,3-triazole-4-carboxamides: An easy
procedure for combinatorial chemistry. J. Comb. Chem. 2009, 11,
481−485.
(17) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-
Promoted [3 + 2] azide−alkyne cycloaddition for covalent
314
dx.doi.org/10.1021/co3000117 | ACS Comb. Sci. 2012, 14, 309−315