Barbas,7 Melchiorre,8 Chen,9 Gong,10 Williams,11 Scheidt,12g
Lu,12h Wang,12d,i and others12 using secondary amine, cinch-
ona alkaloid, phosphine, or phosphoric acid catalysts. With
N-heterocyclic carbene (NHC) catalysis,13 the reactions of
aldehydes, enals, or ketenes with isatins as activated ketone
electrophiles can afford hetero-spirocyclic oxindoles
(oxindole β- or γ-lactones), as disclosed by the groups of
Nair14 and Ye.15 Built on the development of NHC-cata-
lyzed enal activations by Bode, Glorius, Scheidt, Nair,
Rovis, You, and others,16 we are interested in the catalyti-
cally generated enal-derived homoenolate intermediates
pathway is similar to that reported by Bode et al. in related
reactions between enals and β-monosubstituted unsatu-
rated imines.16i
Table 1. Optimization of a Model Reactiona,b
entry
solvent
t (h)
yieldc (%)
drd
1e
2
THF
THF
24
1
0h
93
78
0h
97
97
82:18
86:14
3
CH2Cl2
2
4
CH3CN
24
24
4
5f
6g
THF/CH3CN (1:1)
THF/CH3CN (3:1)
92:8
95:5
a Reaction conditions: 1a (0.12 mmol), 2a (0.10 mmol), B (0.02 mmol),
solvent (1.0 mL) at rt. b For the results of the reactions on 0.5 and
1.0 mmol scales of 2a, see ref 19. c Isolated yield of combined diaster-
eomers (3a and 3a0) based on 2a. d dr (3a:3a0) determined via 1H NMR of
unpurified reaction mixture; relative stereochemistry of both diastereo-
mers was determined via X-ray structures of 3a and 3a0.18 e Used
NHC precatalyst A. f THF/CH3CN (1.0 mL þ 1.0 mL). g THF/CH3CN
(1.5 mL þ 0.5 mL). h No detectable formation of product via TLC and 1H
NMR analysis of crude reaction mixture.
Figure 1. Examples of natural products and synthetic inhibitors
containing spiro oxindole scaffolds.
containing three reactive carbons to build relatively sophis-
ticated molecules.17 Here we report an NHC-catalyzed
synthesis of spiroindoles containing two quaternary carbons
with one all carbon spiro center (Table 1). The catalytic
reaction involves a cascade process of the three consecutive
reactive carbons of enals and oxindole-derived β,β-disub-
stituted R,β-unsaturated imines. The postulated reaction
Our initial studies using cinnamaldehyde (1a) and oxi-
ndole-derived β,β-disubstituted unsaturated imine 2a
as model substrates are briefed in Table 1. The imidazo-
lium-based precatalyst A, previously used in enal
activations,13,14,16aꢀ16c,16j,16k,16m,16p was not effective in
this reaction (Table 1, entry 1). When the triazolium-based
catalyst B was used, the desired spiroindole product 3a
could be obtained in excellent isolated yield with 82:18 dr
(Table 1, entry 2). Given the fact that simple β,β-disub-
stituted R,β-unsaturated imines or ketones were unreactive
(10) (a) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z.
J. Am. Chem. Soc. 2009, 131, 13819–13825. (b) Wei, Q.; Gong, L.-Z.
Org. Lett. 2010, 12, 1008–1011. (c) Cheng, M.-N.; Wang, H.; Gong,
L.-Z. Org. Lett. 2011, 13, 2418–2421.
(11) (a) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122,
5666–5667. (b) Greshock, T. J.; Grubbs, A. W.; Jiao, P.; Wicklow, D. T.;
Gloer, J. B.; Williams, R. M. Angew. Chem., Int. Ed. 2008, 47, 3573–
3577. (c) Miller, K. A.; Tsukamoto, S.; Williams, R. M. Nat. Chem. 2009,
1, 63–68. (d) Millera, K. A.; Williams, R. M. Chem. Soc. Rev. 2009,
3160–3174.
(12) For reviews, see ref 1cꢀ1g. For selected examples, see:
(a) Nussbaum, F. V.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2000,
39, 2175–2178. (b) Mao, Z.; Baldwin, S. W. Org. Lett. 2004, 6, 2425–
2428. (c) Feldman, K. S.; Karatjas, A. G. Org. Lett. 2006, 8, 4137–4140.
(d) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am.
Chem. Soc. 2010, 132, 15328–15333. (e) Companyo, X.; Zea, A.; Alba,
A. N. R.; Mazzanti, A.; Moyanoa, A.; Rios, R. Chem. Commun. 2010,
46, 6953–6955. (f) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.; Cun, L.-F.; Zhang,
X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 3132–3135. (g) Wang, J.; Crane,
E. A.; Scheidt, K. A. Org. Lett. 2011, 13, 3086–3089. (h) Zhong, F.; Han,
X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837–7841.
(i) Cao, Y.; Jiang, X.; Liu, L.; Zhang, F.; Wang, R. Angew. Chem., Int.
Ed. 2011, 50, 9124–9127. (j) Chen, W.-B.; Wu, Z.-J.; Hu, J.; Cun, L.-F.;
Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2011, 13, 2472–2475. (k) Wang,
L.-L.; Peng, L.; Bai, J.-F.; Jia, L.-N.; Luo, X.-Y.; Huang, Q.-C.; Xu,
X.-Y.; Wang, L.-X. Chem. Commun. 2011, 47, 5593–5595. (l) Li, Y.-M.;
Li, X.; Peng, F.-Z.; Li, Z.-Q.; Wu, S.-T.; Sun, Z.-W.; Zhang, H.-B.;
Shao, Z.-H. Org. Lett. 2011, 13, 6200–6203.
(13) Reviews: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev.
2007, 107, 5606–5655. (b) Marion, N.; Gonzalez, S. S. D.; Nolan, S. P.
Angew. Chem., Int. Ed. 2007, 46, 2988–3000. (c) Nair, V.; Vellalath, S.;
Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691–2698. (d) Phillips, E. M.;
Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55–66. (e) DeAlaniz,
J. R.; Rovis, T. Synlett 2009, 1189–1207. (f) Moore, J. L.; Rovis, T.
Top. Curr. Chem. 2010, 291, 77–144. (g) Biju, A. T.; Kuhl, N.; Glorius,
F. Acc. Chem. Res. 2011, 44, 1182–1195. (h) Hirano, K.; Piel, I.; Glorius, F.
Chem. Lett. 2011, 40, 786–791. (i) Chiang, P. C.; Bode, J. W. TCI MAIL
2011, 149, 2–17. (j) Vora, H. U.; Rovis, T. Aldrichimica Acta 2011, 44, 3–11.
(k) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.;
Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336–5346. (l) Chiang, P.-C.;
Bode, J. W. N-Heterocyclic Carbene Catalyzed Reactions of alpha-
Functionalized Aldehydes. Science of Synthesis: Asymmetric Organocata-
lysis; List, B., Ed.; Georg Thieme Verlag: New York, 2012; Vol. 1, 639ꢀ672.
(m) Grossman, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314–325.
(n) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511–3522.
Org. Lett., Vol. 14, No. 9, 2012
2383