Journal of the American Chemical Society
Article
Serpell, C. J.; Thompson, A. L.; White, N. G.; Christensen, K. E.; Beer,
P. D. J. Am. Chem. Soc. 2010, 132, 11893 and references cited therein.
(4) Selected reviews: (a) Metrangolo, P.; Resnati, G. Chem.Eur. J.
2001, 7, 2511. (b) Rissanen, K. CrystEngComm 2008, 10, 1107.
(c) Brammer, L.; Espallargas, G. M.; Libri, S. CrystEngComm 2008, 10,
1712. (d) Bertani, R.; Sgarbossa, P.; Venzo, A.; Lelj, F.; Amati, M.;
Resnati, G.; Pilati, T.; Metrangolo, P.; Terraneo, G. Coord. Chem. Rev.
2010, 254, 677.
(5) See, for example: (a) Di Paolo, T.; Sandorfy, C. Can. J. Chem.
1974, 52, 3612. (b) Metrangolo, P.; Panzeri, W.; Recupero, F.;
Resnati, G. J. Fluorine Chem. 2002, 114, 27 as well as refs 7 and 9.
(6) (a) Legon, A. C. Angew. Chem., Int. Ed. 1999, 38, 2686.
(b) Legon, A. C. in Halogen Bonding: Fundamentals and Applications;
Metrangolo, P., Resnati, G., Eds.; Springer: Berlin, 2008, pp 17.
(7) Selected recent publications: (a) Mele, A.; Metrangolo, P.;
Neukirch, H.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2005, 127,
14972. (b) Sarwar, M. G.; Dragisic, B.; Sagoo, S.; Taylor, M. S. Angew.
Chem., Int. Ed. 2010, 49, 1674. (c) Dimitrijevic, E.; Kvak, P.; Taylor,
M. S. Chem. Commun. 2010, 46, 9025. (d) Serpell, C. J.; Kilah, N. L.;
2918. (b) Schmidtchen, F. P. Chem. Soc. Rev. 2010, 39, 3916. (c) Ursu,
A.; Schmidtchen, F. P. Angew. Chem., Int. Ed. 2012, 51, 242.
(15) m-II-1Me/(Br,BPh4): colorless needle C38H34BBrI2N4 Mr =
891.20; monoclinic, space group P21/n (No. 14), a = 10.6294(3), b =
14.2671(4), and c = 23.8757(7) Å, β = 102.4990(12)°, V =
3534.95(18) Å3, Z = 4, λ(Mo Kα) = 0.71073 Å, μ = 2.942 mm−1,
ρcalcd = 1.675 g cm−3, T = 123(1) K, F(000) = 1744, θmax = 25.35°, R1
= 0.0150 (6251 observed data), wR2 = 0.0389 (all 6464 data), GOF =
1.093, 417 parameters, Δρmax/min = 0.56/−0.37 e Å−3. Crystallographic
data (excluding structure factors) for the structure reported in this
paper have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-859901. Copies of
the data can be obtained free of charge on application to CCDC, 12
Union Rd., Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-
Information.
(16) For these cases, the stoichiometry coefficients are significantly
smaller than two, indicating a convolution of the two halide binding
events.
(17) We note that for simple acyclic imidazolium compounds
binding constants for their complexes with halides in the order of 103
have been reported, see e.g.: Spence, G. T.; Serpell, C. J.; Sardinha, J.;
́
Costa, P. J.; Felix, V.; Beer, P. D. Angew. Chem., Int. Ed. 2010, 49, 5322.
(e) Caballero, A.; White, N. G.; Beer, P. D. Angew. Chem., Int. Ed.
2011, 50, 1845. (f) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S.
M. Angew. Chem., Int. Ed. 2011, 50, 7181. (g) Jentzsch, A. V.; Emery,
D.; Mareda, J.; Metrangolo, P.; Resnati, G.; Matile, S. Angew. Chem.,
Int. Ed. 2011, 50, 11675. (h) Kniep, F.; Walter, S. M.; Herdtweck, E.;
Huber, S. M. Chem.Eur. J. 2012, 18, 1306.
Costa, P. J.; Fel
́
ix, V.; Beer, P. D. Chem.Eur. J. 2011, 17, 12955.
(18) In addition to the experiments mentioned in Table 1, we also
titrated m-HH-1Me/OTf (in acetonitrile and acetone) as well as m-
HH-1Oct/OTf (in acetonitrile) with tetrabutylammonium chloride,
bromide, and iodide at 30°. No heat effect was detected in any of these
measurements in acetonitrile. In acetone, heat effects (likely due to
precipitation) were observed, but no binding parameters could be
obtained from the ITC data.
(8) See, for example, ref 5b as well as: (a) Reid, C.; Mulliken, R. S. J.
Am. Chem. Soc. 1954, 76, 3869. (b) Larsen, D. W.; Allred, A. L. J. Am.
Chem. Soc. 1965, 87, 1216. (c) Larsen, D. W.; Allred, A. L. J. Phys.
Chem. 1965, 69, 2400. (d) Messina, M. T.; Metrangolo, P.; Panzeri,
W.; Ragg, E.; Resnati, G. Tetrahedron Lett. 1998, 39, 9069.
(19) See Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187
and references cited therein.
(9) Selected recent publications: (a) Cabot, R.; Hunter, C. A. Chem.
Commun. 2009, 2005. (b) Sarwar, M. G.; Dragisic, B.; Salsberg, L. J.;
Gouliaras, C.; Taylor, M. S. J. Am. Chem. Soc. 2010, 132, 1646.
(c) Laurence, C.; Graton, J.; Berthelot, M.; El Ghomari, M. J. Chem.
Eur. J. 2011, 17, 10431. (d) Beweries, T.; Brammer, L.; Jasim, N. A.;
McGrady, J. E.; Perutz, R. N.; Whitwood, A. C. J. Am. Chem. Soc. 2011,
133, 14338.
(10) (a) An even higher binding constant was found for the complex
of 1-methyl-1,3-imidazoline-2-selenone with iodine in dichloro-
methane (K = 2.57 × 106 M−1), see ref 9c. To the best of our
knowledge, as far as neutral halogen bond donors are concerned, this
represents the highest binding constant for a halogen-bond-based non-
covalent complex reported in the literature; (b) During the revision
process of this manuscript, an interesting study was published by Beer
et al., which includes a charge-assisted halogen-bond-based complex
with a binding constant of 3.71 × 106 M−1: Caballero, A.; Zapata, F.;
(20) See ref 14 as well as: (a) Doyle, A. G.; Jacobsen, E. N. Chem.
Rev. 2007, 107, 5713. (b) Birrell, J. A.; Desrosiers, J.-N.; Jacobsen, E.
N. J. Am. Chem. Soc. 2011, 133, 13872. (c) Klauber, E. G.; Mittal, N.;
Shah, T. K.; Seidel, D. Org. Lett. 2011, 13, 2464 and references cited
therein.
(21) (a) Libri, S.; Jasim, N. A.; Perutz, R. N.; Brammer, L. J. Am.
Chem. Soc. 2008, 130, 7842. (b) For the temperature dependence of
the halogen bonding between halotrifluoromethanes and various Lewis
bases in liquid noble gases, see: Hauchecorne, D.; Nagels, N.; van der
Veken, B. J.; Herrebout, W. A. Phys. Chem. Chem. Phys. 2012, 14, 681
and references cited therein. (c) Forni, A.; Metrangolo, P.; Pilati, T.;
Resnati, G. Cryst. Growth Des. 2004, 4, 291 and references cited
therein.
(22) For a recent review on counterion effects in supramolecular
chemistry, see: Gasa, T. B.; Valente, C.; Stoddart, J. F. Chem. Soc. Rev.
2011, 40, 57. For interactions of imidazolium cations with their
counteranions in solution, see e.g.: (a) Avent, A. G.; Chaloner, P. A.;
Day, M. P.; Seddon, K. R.; Welton, T. J. Chem. Soc., Dalton Trans.
1994, 3405. (b) Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan,
N.; Tan, Y. M.; Welton, T.; Zora, J. A. J. Chem. Soc., Dalton Trans.
́
White, N. G.; Costa, P. J.; Felix, V.; Beer, P. D. Angew. Chem., Int. Ed.
2012, 51, 1876. (c) Also during the revision process of this
1
manuscript, a H NMR titration study of haloimidazolium salts with
various anions was published: Cametti, M.; Raatikainen, K.;
Metrangolo, P.; Pilati, T.; Terraneo, G.; Resnati, G. Org. Biomol.
Chem. 2012, 10, 1329.
1995, 3467. (c) Kovacevic, A.; Grundemann, S.; Miecznikowski, J. R.;
̈
Clot, E.; Eisenstein, O.; Crabtree, R. H. Chem. Commun. 2002, 2580
and references cited therein.
(11) See ref 9c and references cited therein.
(23) Theoretical study on XBs in solution: Lu, Y.; Li, H.; Zhu, X.;
Zhu, W.; Liu, H. J. Phys. Chem. A 2011, 115, 4467.
(12) In this manuscript, “binding strength” refers to the free energy
ΔG0.
(24) Hydrogen-bond acidity αH and hydrogen-bond basicity βH
2
2
(13) (a) Schmidtchen, F. P. Isothermal Titration Calorimetry in
Supramolecular Chemistry. In Supramolecular Chemistry: from
Molecules to Nanomaterials; Steed, J. W., Gale, P. A., Eds.; Wiley:
Chichester, 2012; pp 275−296; (b) Ball, V.; Maechling, C. Int. J. Mol.
Sci. 2009, 10, 3283.
refer to the scale established by Abraham et al., see: Abraham, M. H.
Chem. Soc. Rev. 1993, 22, 73 and references cited therein.
(25) See also: Sessler, J. L.; Gross, D. E.; Cho, W.-S.; Lynch, V. M.;
Schmidtchen, F. P.; Bates, G. W.; Light, M. E.; Gale, P. A. J. Am. Chem.
Soc. 2006, 128, 12281.
(14) ITC measurements have frequently been employed for the
determination of interaction strengths of supramolecular complexes
and protein−ligand complexes, see e.g.: Koch, C.; Heine, A.; Klebe, G.
J. Mol. Biol. 2011, 406, 700. We note that isothermal calorimetric
titrations simultaneously provide ΔH and ΔS values in one
measurement. For the important role of entropy in supramolecular
interactions, see: (a) Schmidtchen, F. P. Coord. Chem. Rev. 2006, 250,
8512
dx.doi.org/10.1021/ja2119207 | J. Am. Chem. Soc. 2012, 134, 8507−8512