Journal of the American Chemical Society
Communication
Table 2. Rate Constants (M−1s−1) of the Imine-Bond
Formation between A and B in the Presence of 1a
REFERENCES
■
(1) (a) Polowinski, S. Template Polymerization; ChemTec Publishing:
Ontario, 1997. (b) Diederich, F.; Stang, P. J. Templated Organic
Synthesis; Wiley-VCH: Weinheim, 2000.
(2) Reviews on template-directed polymerization and template
synthesis: (a) Inaki, Y.; Takemoto, K. Adv. Polym. Sci. 1981, 41, 1.
(b) Hoss, R.; Vogtle, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 375.
̈
(c) Tan, Y. Y. Prog. Polym. Sci. 1994, 19, 561. (d) Leitzel, J. C.; Lynn,
D. G. Chem. Rec. 2000, 1, 53. (e) Summerer, D.; Marx, A. Angew.
Chem., Int. Ed. 2002, 41, 89. (f) Polowinski, S. Prog. Polym. Sci. 2002,
27, 537. (g) Li, X.; Liu, D. R. Angew. Chem., Int. Ed. 2004, 43, 4848.
(h) Silverman, A. P.; Kool, E. T. Chem. Rev. 2006, 106, 3775.
Finally, to gain information about the rate constants of (S,S)-
and (R,R)-B with A during two-step imine-bond formations
along 1a, the time-dependent 1H NMR spectral changes
(Figure 1a,b) were analyzed, and the concentrations of
carboxylic acid monomer A, monoimine intermediate AB,
and carboxylic acid dimer A2B were plotted versus reaction
time (Figure S1c,d), revealing that the imine-bond formations
of (R,R)-B in each step assisted by 1a reached equilibrium
much faster than for (S,S)-B. It was difficult to estimate the rate
constant at each step analytically due to the complicated two-
step reversible reactions (Table 2). Thus, the kinetic data were
fitted by numerical integration using the fourth-order Runge−
Kutta method to estimate the rate constants (SI and Table 2).
The rate constants for the first forward reaction (k1) in the
presence of 1a at 25°C were estimated to be 1.4 M−1s−1 for
(R,R)-B and 0.65 M−1s−1 for (S,S)-B, indicating that (R,R)-B
reacted with A almost 2.2 times faster than (S,S)-B to form
monoimine intermediate AB. During further reaction of AB
with A, (R,R)-AB was found to react 8.1 times faster than (S,S)-
AB, forming carboxylic acid dimer A2B rich in (R,R)-B; the rate
constants for the second forward reaction (k2) along 1a at 25°C
were 8.1 M−1s−1 for (R,R)-B and 1.0 M−1s−1 for (S,S)-B.
This remarkable enhancement of the rate constants for AB,
particularly (R,R)-AB in the second imine-bond formation,
could be ascribed to ternary complexation of 1a·A·(R,R)-AB,
with the aldehyde group of A and the remaining amino group
of (R,R)-AB much more favorably located than in 1a·A·(S,S)-
AB so as to form a complementary double helix with helix
sense bias assisted by the chiral amidine of 1a. Therefore, in the
second imine-bond formation, the (S,S/R,R) selectivity and its
diastereoselectivity of racemic B could be mainly controlled by
the amidine chirality of the chiral amidine templates initially,
but both the amidine and linker chiralities contribute at
equilibrium.
(i) Svoboda, J.; Konig, B. Chem. Rev. 2006, 106, 5413. (j) Prins, L. J.;
̈
Scrimin, P. Angew. Chem., Int. Ed. 2009, 48, 2288.
(3) Bohler, C.; Nielsen, P. E.; Orgel, L. E. Nature 1995, 376, 578.
̈
Ura, Y.; Beierle, J. M.; Leman, L. J.; Orgel, L. E.; Ghadiri, M. R. Science
2009, 325, 73.
(4) Goodwin, J. T.; Lynn, D. G. J. Am. Chem. Soc. 1992, 114, 9197.
Zhan, Z.-Y. J.; Lynn, D. G. J. Am. Chem. Soc. 1997, 119, 12420. Li, X.;
Zhan, Z.-Y. J.; Knipe, R.; Lynn, D. G. J. Am. Chem. Soc. 2002, 124, 746.
(5) Li, X.; Liu, D. R. J. Am. Chem. Soc. 2003, 125, 10188.
(6) Rosenbaum, D. M.; Liu, D. R. J. Am. Chem. Soc. 2003, 125,
13924. Kleiner, R. E.; Brudno, Y.; Birnbaum, M. E.; Liu, D. R. J. Am.
Chem. Soc. 2008, 130, 4646.
(7) Lee, D. H.; Granja, J. R.; Martinez, J. A.; Severin, K.; Ghadiri, M.
R. Nature 1996, 382, 525. Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski,
J. J. Am. Chem. Soc. 1997, 119, 10559. Krishnan-Ghosh, Y.;
Balasubramanian, S. Angew. Chem., Int. Ed. 2003, 42, 2171.
(8) Kelly, T. R.; Zhao, C.; Bridger, G. J. J. Am. Chem. Soc. 1989, 111,
3744. Tjivikua, T.; Ballester, P.; Rebek, J., Jr. J. Am. Chem. Soc. 1990,
112, 1249. Terfort, A.; von Kiedrowski, G. Angew. Chem., Int. Ed. Engl.
1992, 31, 654. Wang, B.; Sutherland, I. O. Chem. Commun. 1997,
1495. Kassianidis, E.; Philp, D. Angew. Chem., Int. Ed. 2006, 45, 6344.
(9) Serizawa, T.; Hamada, K.-i.; Akashi, M. Nature 2004, 429, 52. Lin,
N.-T.; Lin, S.-Y.; Lee, S.-L.; Chen, C.-h.; Hsu, C.-H.; Hwang, L. P.; Xie,
Z.-Y.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Angew. Chem., Int. Ed.
2007, 46, 4481. Lo, P. K.; Sleiman, H. F. J. Am. Chem. Soc. 2009, 131,
4182.
(10) Roelfes, G. Mol. Biosyst. 2007, 3, 126.
(11) Recent reviews on synthetic double helices: Hecht, S.; Huc, I.
Foldamers: Structure, Properties, and Applications; Wiley-VCH:
Weinheim, 2007. Furusho, Y.; Yashima, E. Chem. Rec. 2007, 7, 1.
Amemiya, R.; Yamaguchi, M. Org. Biomol. Chem. 2008, 6, 26. Saraogi,
I.; Hamilton, A. D. Chem. Soc. Rev. 2009, 38, 1726. Haldar, D.;
Schmuck, C. Chem. Soc. Rev. 2009, 38, 363. Juwarker, H.; Jeong, K.-S.
Chem. Soc. Rev. 2010, 39, 3664. Guichard, G.; Huc, I. Chem. Commun.
2011, 47, 5933.
(12) Artificial double helices based on amidinium-carboxylate salt
bridges: Tanaka, Y.; Katagiri, H.; Furusho, Y.; Yashima, E. Angew.
Chem., Int. Ed. 2005, 44, 3867. Hasegawa, T.; Furusho, Y.; Katagiri, H.;
Yashima, E. Angew. Chem., Int. Ed. 2007, 46, 5885. Ito, H.; Furusho, Y.;
Hasegawa, T.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 14008. Ito, H.;
Ikeda, M.; Hasegawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc.
2011, 131, 3419.
We believe the present findings will contribute to developing
more sophisticated template-assisted asymmetric replication
using complementary chiral amidinium-carboxylate salt bridges.
ASSOCIATED CONTENT
* Supporting Information
Experimental details. This material is available free of charge via
■
S
(13) Yamada, H.; Furusho, Y.; Ito, H.; Yashima, E. Chem. Commun.
2010, 46, 3487.
(14) Recent examples: Oh, K.; Jeong, K. S.; Moore, J. S. Nature
2001, 414, 889. Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.;
Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308.
Campbell, V. E.; Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.;
Nitschke, J. R. Nat. Chem. 2010, 2, 684. Belowich, M. E.; Stoddart, J. F.
Chem. Soc. Rev. 2012, 41, 2003.
(15) In the absence of the template, carboxylic acid monomer A self-
catalyzed the reaction with B, giving complexed mixtures of monomer
(AB) and dimer (A2B) (Figure S16).
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Supported by Grant-in-Aids for Scientific Research (S) from
JSPS (E.Y.), for Scientific Research on Innovative Areas,
“Emergence in Chemistry” (20111010, Y.F.) from MEXT, and
JSPS Research Fellowship for Young Scientists (2728, H.Y.).
(16) Similar amide-sequence effect: Goto, K.; Moore, J. S. Org. Lett.
2005, 7, 1683.
7253
dx.doi.org/10.1021/ja301430h | J. Am. Chem. Soc. 2012, 134, 7250−7253