4284
M. Kitamura et al. / Tetrahedron 68 (2012) 4280e4285
Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 69, 595e600; (e) Nakai, T.; Mi-
kami, K. Org. React. 1994, 46, 105e209; (f) Marshall, J. A. In; Trost, B. M., Fleming,
I., Eds. Comprehensive Organic Synthesis; Pergamon: New York, 1991; Vol. 3,
pp 975e1014.
(s, 2H), 4.26 (br s, 2H), 4.49 (s, 1H), 5.80 (q, J¼6.9 Hz, 1H), 6.86 (dd,
J¼8.1, 0.9 Hz, 1H), 6.94 (td, J¼7.4, 0.9 Hz, 1H), 7.25 (td, J¼8.1, 1.7 Hz,
1H), 7.37 (d, J¼7.4, 1.7 Hz, 1H); 13C NMR
d: 12.0 (3C), 13.0, 18.0 (6C),
2. For enantioselective [2,3]-Wittig rearrangement of allyl propargyl ether-type sub-
strates, see: (a) Tomooka, K.; Komine, N.; Nakai, T. Chirality 2000, 12, 505e509; (b)
Tomooka, K.; Komine, N.; Nakai, T. Tetrahedron Lett. 1998, 39, 5513e5516; (c)
Manabe, S. Chem. Pharm. Bull. 1998, 46, 335e336; (d) Manabe, S. Chem. Commun.
1997, 737e738; (e) Kang, J.; Cho, W. O.; Cho, H. G.; Oh, H. J. Bull. Korean Chem. Soc.
1994, 15, 732e739. For enantioselective [2,3]-Wittig rearrangement of allyl benzyl
ether-type substrates, see: (f) Barrett, I. M.; Breeden, S. W. Tetrahedron: Asymmetry
2004,15, 3015e3017;(g) Tsubuki, M.;Takahashi, K.; Honda, T. J. Org. Chem. 2003, 68,
10183e10186; (h) Kawasaki, T.; Kimachi, T. Tetrahedron 1999, 55, 6847e6862; (i)
Kawasaki, T.;Kimachi, T. Synlett1998,1429e1431andreferences2a, b, c, d. Forother
asymmetric [2,3]-Wittig rearrangement, see: (j) Li, Y.-J.; Ho, G.-M.; Chen, P.-Z. Tet-
rahedron: Asymmetry 2009, 20, 1854e1863; (k) Sasaki, M.; Higashi, M.; Hyuma, M.;
Yamaguchi, K.; Takeda, K. Org. Lett. 2005, 7, 5913e5915; (l) Gibson, S. E.; Ham, P.;
Jefferson, G. R. Chem. Commun.1998,123e124; (m) Marshall, J. A.; Wang, X.-J. J. Org.
Chem. 1992, 57, 2747e2750.
55.3, 65.3, 65.5, 66.3 (t, J(C,D)¼21.5 Hz), 110.1, 120.4, 123.4, 127.0,
128.5, 128.9, 136.1, 157.1; IR (KBr) cmꢀ1: 2119, 1603, 1492; MS (FAB)
m/z: 380 [MþH]þ; HRMS (FAB) m/z: calcd for C22H38DO3Si:
380.2731, found: 380.2750 [MþH]þ.17
4.2.3. (S,E)-1-[a-Deuterio(2-methoxybenzyl)oxy]-2-(triisopropylsi-
lyloxymethyl)but-2-en [(S)-1b-d]. Colorless oil (67%). The 1H and
13C NMR spectral data were identified to those of the (R)-
enantiomer.17
4.3. General procedure of [2,3]-Wittig rearrangement:
(1R,2S)-1-deuterio-2-methyl-1-phenyl-3-
3. (a) Gawley, R. E.; Zhang, Q.; Campagna, S. J. Am. Chem. Soc. 1995, 117,
11817e11818; (b) Verner, E. J.; Cohen, T. J. Am. Chem. Soc. 1992, 114, 375e377; (c)
Hoffmann, R.; Bruckner, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 647e649; (d)
(triisopropylsilyloxymethyl)but-3-en-1-ol [(1R,2S)-2a-d]
€
Tomooka, K.; Igarashi, T.; Watanabe, M.; Nakai, T. Tetrahedron 1992, 33,
5795e5798.
tBuLi (1.58 M in pentane, 0.80 mL, 1.27 mmol) was added to
a solution of allyl benzyl ether (R)-1a-d (44.4 mg, 0.127 mmol) and
(S,S)-Box-tBu (37.4 mg, 0.127 mmol) in dry hexane (0.64 mL) with
stirring at ꢀ78 ꢁC under Ar. The stirring was continued for 2 h at
this temperature. The reaction mixture was quenched with satu-
rated aqueous NH4Cl and allowed to warm to room temperature.
The resulting mixture was extracted with EtOAc. The combined
extracts were washed with saturated aqueous NH4Cl, water, and
brine prior to drying and solvent evaporation. The crude was
purified by PTLC (SiO2) with hexane/EtOAc (7:1) to give (1R,2S)-
4. For examples of the configurationally stable carbanion, see: (a) Hammerschmidt,
€
F.; Hanninger, A.; Simov, B. P.; Vollenkle, H.; Werner, A. Eur. J. Org. Chem. 1999,
3511e3518; (b) Hammerschmidt, F.; Hanninger, A.; Vollenkle, H. Chem.dEur. J.
1997, 3, 1728e1732; (c) Coldham, I.; Hufton, R.; Snowden, D. J. J. Am. Chem. Soc.
1996, 118, 5322e5323; (d) Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102,
€
1201e1202; (e) Hoppe, D.; Carstens, A.; Kramer, T. Angew. Chem., Int. Ed. Engl.
1990, 29, 1424e1425. For examples of configurationally labile carbanion, see: (f)
Lee, W. K.; Park, Y. S.; Beak, P. Acc. Chem. Res. 2009, 42, 224e234; (g) Lange, H.;
€
Bergander, K.; Frohlich, R.; Kehr, S.; Nakamura, S.; Shibata, N.; Toru, T.; Hoppe, D.
€
Chem.dAsian. J. 2008, 3, 88e101; (h) Lange, H.; Huenerbein, R.; Frohlich, R.;
Grimme, S.; Hoppe, D. Chem.dAsian. J. 2008, 3, 78e87 For review on configu-
€
rational stability of chiral carbanions, see: (i) Dorwald, F. Z. Side Reactions in
2a-d (28.0 mg, 63%) as a colorless oil (97% ee). ½a D27
ꢂ ꢀ11.7 (c 1.45,
Organic Synthesis; Wiley-VCH: Weinheim, 2005; 197e203.
CHCl3); 1H NMR
d
: 0.99 (d, J¼7.1 Hz, 3H), 1.05e1.16 (m, 21H), 2.60
5. (a) Kitamura, M.; Hirokawa, Y.; Maezaki, N. Chem.dEur. J. 2009, 15, 9911e9917; (b)
Hirokawa, Y.; Kitamura, M.; Maezaki, N. Tetrahedron: Asymmetry 2008, 19,
1167e1170.
6. The yield and selelctiviy of 2b reported in Ref. 5 were revised as shown in
Schemes 1 and 6.
7. The dideuterated benzylic alcohols 3a and 3b were prepared by reduction with
LiAlD4 from ethyl benzoate and methyl o-methoxybenzoates, respectively.
8. (a) O’Hagan, D.; Goss, R. J. M.; Meddour, A.; Courtieu, J. J. Am. Chem. Soc. 2003,
125, 379e387; (b) Sato, I.; Omiya, D.; Saito, T.; Soai, K. J. Am. Chem. Soc. 2000,
122, 11739e11740 and references cited therein.
9. Ohta, T.; Tsutsumi, T.; Takaya, H. J. Organomet. Chem. 1994, 484, 191e193.
10. Sato, I.; Omiya, D.; Saito, T.; Soai, K. J. Am. Chem. Soc. 2000, 122, 11739e11740.
11. Takeuchi, Y.; Fujisawa, H.; Noyori, R. Org. Lett. 2004, 6, 4607e4610.
12. The stereochemistry of monodeuterated o-methoxybenzyl alcohol 5b-d was
speculated by comparison of the chemical shifts of the benzylic proton and
deuterium in the 1H and 2D NMR spectra, respectively, after conversion to (S)-
and (R)-Mosher esters. The Dd value is the difference of the chemical shifts
(q, J¼7.1 Hz, 1H), 3.04 (s, 1H), 4.08 (d, J¼12.9 Hz, 1H), 4.22 (d,
J¼12.9 Hz, 1H), 4.98 (br s, 1H), 5.20 (br s, 1H), 7.21e7.37 (m, 5H);
13C NMR
d: 11.9 (3C), 12.5, 18.0 (6C), 44.8, 66.0, 75.5 (t,
J(C,D)¼21.5 Hz), 112.6, 126.2 (2C), 126.9, 127.9 (2C), 142.9, 150.5; IR
(KBr) cmꢀ1: 3411, 2129, 1651, 1603, 1494; MS (FAB) m/z: 350
[MþH]þ; HRMS (FAB) m/z: calcd for C21H36DO2Si: 350.2626,
found: 350.2612 [MþH]þ.
4.3.1. (1R,2S)-1-Deuterio-1-(2-methoxyphenyl)-2-methyl-3-(triiso-
propylsilyloxymethyl)-but-3-en-1-ol [(1R,2S)-2b-d]. Colorless oil
(61% ee). ½a 2D6
ꢂ
ꢀ6.2 (c 0.46, CHCl3); 1H NMR
: 1.01 (d, J¼7.1 Hz, 3H),
d
1.06e1.16 (m, 21H), 2.65 (q, J¼7.1 Hz, 1H), 3.00 (s, 1H), 3.83 (s, 3H),
4.10 (d, J¼13.6 Hz, 1H), 4.19 (d, J¼13.6 Hz, 1H), 5.02 (s, 1H), 5.20 (s,
1H), 6.85 (d, J¼7.9 Hz, 1H), 6.94 (t, J¼7.4 Hz, 1H), 7.21 (td, J¼7.9
between (S)- and (R)-MTPA esters (Dd
¼
dS dR). dH and dD are the chemical shift
ꢀ
difference (Dd) in the 1H and 2D NMR spectra. In the equilibrium between two
favorable conformations of the MTPA esters of (S)-5b-d, the benzylic proton of
(R)-MTPA ester and deuterium of (S)-MTPA ester would be shielded by the
phenyl group (See the scheme below). In the Mosher ester of (R)-5b-d, deu-
terium of (R)-MTPA ester and the benzylic proton of (S)-MTPA ester were
shielded. Therefore, we assumed that the enantiomer with positive DdH values
(þ0.07 ppm) and negative DdD values (ꢀ0.04 ppm) was assigned (S) config-
uration. The enantiomer exhibiting an opposite sign, that is, negative DdH
values (ꢀ0.07 ppm) and positive DdD values (þ0.06 ppm), was assigned (R)
configuration. A similar discussion was reported using CFTA ester by Takeuchi
and co-workers in Ref. 11. In addition, the comparison of the specific rotation
,1.5 Hz, 1H), 7.40 (dd, J¼7.4, 1.5 Hz, 1H); 13C NMR
d: 12.0 (3C), 12.7,
18.0 (6C), 42.1, 55.2, 65.6, 71.8 (t, J(C,D)¼22.3 Hz), 110.1, 111.0, 120.4,
127.8, 127.8, 131.0, 151.3, 156.1; IR (KBr) cmꢀ1: 3423, 2163, 1650,
1602, 1491; MS (FAB) m/z: 380 [MþH]þ; HRMS (FAB) m/z: calcd for
C22H38DO3Si: 380.2731, found: 380.2744 [MþH]þ.
Acknowledgements
with
a-monodeuterated benzyl alcohols [(R)- and (S)-5a-d] support the
assignment.
We acknowledge the financial support of a Grant-in-Aid for
Scientific Research (C) from the Japan Society for the Promotion of
Science (No. 21590032) and Osaka Ohtani University Research Fund
(Pharmaceutical Sciences).
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. For reviews of [2,3]-Wittig rearrangement, see: (a) Tomooka, K. Chem. Orga-
nolithium Compd. 2004, 2, 749e828; (b) Hiersemann, M.; Abraham, L.; Pollex, A.
Synlett 2003, 1088e1095; (c) McGowan, G. Aust. J. Chem. 2002, 55, 799; (d)