H.-S. Yoon, J.-H. Kim, E. J. Kang, H.-Y. Jang
SHORT COMMUNICATION
2006, 7, 438–450; c) J.-R. Ella-Menye, G. Wang, Tetrahedron
2007, 63, 10034–10041.
experimental results, it appears that an allyl-platinum inter-
mediate is formed via allylic oxidative insertion of the plati-
num–stannane complex, leading to the desired cyclization.
[3]
a) T. B. Sim, S. H. Kang, K. S. Lee, W. K. Lee, H. Yun, Y.
Dong, H.-J. Ha, J. Org. Chem. 2003, 68, 104–108; b) Y. Osa,
Y. Hikima, Y. Sato, K. Takino, Y. Ida, S. Hirono, H. Nagase,
J. Org. Chem. 2005, 70, 5737–5740; c) G. Bartoli, M. Bosco,
A. Carlone, M. Locatelli, P. Melchiorre, L. Sambri, Org. Lett.
2005, 7, 1983–1985; d) M. M. Elenkov, L. Tang, A. Meetsma,
B. Hauer, D. B. Janssen, Org. Lett. 2008, 10, 2417–2420; e) Z.-
Z. Yang, L.-N. He, S.-Y. Peng, A.-H. Liu, Green Chem. 2010,
12, 1850–1854; f) F. Fontana, C. C. Chen, V. K. Aggarwal, Org.
Lett. 2011, 13, 3454–3457.
Conclusions
We have discovered that a platinum complex can be uti-
lized for the synthesis of synthetically and biologically im-
portant 5-vinyl oxazolidinones by cyclization of allyl carb-
amates. A variety of substrates possessing tosyl-, benzyl-,
allyl-, and propargyl-substituted amines participate in the
reaction to afford 5-vinyloxazolidinones. As a substituent
at the carbamate oxygen, benzyl and allyl groups as well as
the tert-butyl group undergo fragmentation to promote the
desired cyclization. Regarding the working mechanism, the
formation of the allyl-platinum intermediate and interac-
tion of the platinum metal ion and the oxygen nucleophile
are key factors that promote the efficient cyclization.
[4]
[5]
M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, A. Inesi, J. Org.
Chem. 2005, 70, 7795–7798.
a) J. Fournier, C. Bruneau, P. H. Dixneuf, Tetrahedron Lett.
1990, 31, 1721–1722; b) C. Bruneau, P. H. Dixnuef, J. Mol.
Catal. 1992, 74, 97–107; c) M. Shi, Y.-M. Shen, J. Org. Chem.
2002, 67, 16–21; d) Q. Zhang, F. Shi, Y. Gu, J. Yang, Y. Deng,
Tetrahedron Lett. 2005, 46, 5907–5911; e) Y. Gu, Q. Zhang, Z.
Duan, J. Zhang, S. Zhang, Y. Deng, J. Org. Chem. 2005, 70,
7376–7380; f) H. Jiang, J. Zhao, A. Wang, Synthesis 2008, 763–
769; g) H.-F. Jiang, J.-W. Zhao, Tetrahedron Lett. 2009, 50, 60–
62; h) Y. Kayaki, N. Mori, T. Ikariya, Tetrahedron Lett. 2009,
50, 6491–6493.
[6]
a) S. Tanimori, M. Kirihata, Tetrahedron Lett. 2000, 41, 6785–
6788; b) A. Lei, G. Liu, X. Lu, J. Org. Chem. 2002, 67, 974–
980; c) S. Tanimori, U. Inaba, Y. Kato, M. Kirihata, Tetrahe-
dron 2003, 59, 3745–3751; d) M. Amador, X. Ariza, J. Boyer,
L. DЈAndrea, J. Garcia, J. Granell, Tetrahedron Lett. 2010, 51,
935–938.
Experimental Section
Representative Experimental Procedure for Cyclization of N-Allyl
Carbamates: To a premixed solution of PtCl2 (5 mol-%), phos-
phane (10 mol-%), and SnCl2 (25 mol-%) under N2 in dichloro-
ethane was added the starting material at room temperature. The
resulting mixture was allowed to react at 80 °C until the starting
material was completely consumed. The representative experimen-
tal procedure was applied to compound 1a (101.0 mg, 0. 25 mmol)
to yield product 1b (59.4 mg, 89%). Compound 1b has previously
been reported.[18]
[7]
[8]
For Pd-catalyzed cyclization of dibromoenamides, see: D. I.
Chai, L. Hoffmeister, M. Lautens, Org. Lett. 2011, 13, 106–
109.
a) M. Kimura, S. Kure, Z. Yoshida, S. Tanaka, K. Fugami, Y.
Tamaru, Tetrahedron Lett. 1990, 31, 4887–4890; b) Y. Tamaru,
M. Kimura, S. Tanaka, S. Kure, Z. Yoshida, Bull. Chem. Soc.
Jpn. 1994, 67, 2838–2849; c) R. Robles-Machín, J. Adrio, J. C.
Carretero, J. Org. Chem. 2006, 71, 5023–5026; d) A. Buzas, F.
Gagosz, Synlett 2006, 2727–2730; e) S. Ritter, Y. Horino, J.
Lex, H.-G. Schmalz, Synlett 2006, 3309–3313; f) E.-S. Lee, H.-
S. Yeom, J.-H. Hwang, S. Shin, Eur. J. Org. Chem. 2007, 3503–
3507.
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data for new compounds.
[9]
a) J.-T. Hong, X. Wang, J.-H. Kim, K. Kim, H. Yun, H.-Y.
Jang, Adv. Synth. Catal. 2010, 352, 2949–2954; b) J.-T. Hong,
H.-Y. Jang, J. Org. Chem. 2011, 76, 6877–6882.
Acknowledgments
[10]
For preparation and reactions of electrophilic allyl-platinum
complexes, see: a) S.-C. Yang, Y.-C. Tsai, Y.-J. Shue, Organome-
tallics 2001, 20, 5326–5330; b) M. L. Clarke, Polyhedron 2001,
20, 151–164; c) S.-C. Yang, W.-H. Feng, K.-H. Gan, Tetrahe-
dron 2006, 62, 3752–3760; d) D. S. Helfer, D. S. Phaho, J. D.
Atwood, Organometallics 2006, 25, 410–415; e) M. Utsuno-
miya, Y. Miyamoto, J. Ipposhi, T. Ohshima, K. Mashima, Org.
Lett. 2007, 9, 3371–3374; f) K.-H. Gan, C.-J. Jhong, Y.-J. Shue,
S.-C. Yang, Tetrahedron 2008, 64, 9625–9629; g) G. Mora, O.
Piechaczyk, R. Houdard, N. Mézailles, X.-F. Le Goff, P.
le Floch, Chem. Eur. J. 2008, 14, 10047–10057; h) T. Ohshima,
Y. Miyamoto, J. Ipposhi, Y. Nakahara, M. Utsunomiya, K.
Mashima, J. Am. Chem. Soc. 2009, 131, 14317–14328.
a) D. J. Diekema, R. N. Jones, Drugs 2000, 59, 7–16; b) P. t.
Holte, B. C. J. van Esseveldt, L. Thijs, B. Zwanenburg, Eur. J.
Org. Chem. 2001, 2965–2969; c) V. Arora, M. M. Salunkhe, N.
Sinha, R. K. Sinha, S. Jain, Bioorg. Med. Chem. Lett. 2004,
14, 4647–4650; d) J. Das, C. V. L. Rao, T. V. R. S. Sastry, M.
Roshaiah, P. G. Sankar, A. Khadeer, S. Kumar, A. Mallik, N.
Selvakumar, J. Iqbal, S. Trehan, Bioorg. Med. Chem. Lett. 2005,
15, 337–343; e) Y. Cui, Y. Dang, Y. Yang, S. Zhang, R. Ji,
Eur. J. Med. Chem. 2005, 40, 209–214; f) J. A. Demaray, J. E.
Thuener, M. N. Dawson, S. J. Sucheck, Bioorg. Med. Chem.
Lett. 2008, 18, 4868–4871; g) X. Zhang, W. Chen, C. Zhao, C.
Li, X. Wu, W. Z. Chen, Synth. Commun. 2010, 40, 3654–3659;
This study was supported by the Korea Research Foundation (No.
2010–0029617 and 2010–0002396) and Ajou research fellowship of
2011 (No. S-2011-G0001–00069).
[1] For recent articles reporting oxazolidinones as a chiral building
block, see: a) D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev.
1996, 96, 835–875; For biological units, see: b) K. S. Gates,
R. B. Silverman, J. Am. Chem. Soc. 1990, 112, 9364–9372; c)
S. H. Rosenberg, H. D. Kleinert, H. H. Stein, D. L. Martin,
M. A. Chekal, J. Cohen, D. A. Egan, K. A. Tricarico, W. R.
Baker, J. Med. Chem. 1991, 34, 469–471; d) H. Prücher, R.
Gottschlich, A. Haase, M. Stohrer, C. Seyfried, Bioorg. Med.
Chem. Lett. 1992, 2, 165–170; e) Y. Sakamoto, A. Shiraishi, S.
Jeong, T. Nakata, Tetrahedron Lett. 1999, 40, 4203–4206; f) H.
Kakeya, M. Morishita, H. Koshino, T.-i. Morita, K. Kobaya-
shi, H. Osada, J. Org. Chem. 1999, 64, 1052–1053; g) J. R.
Gage, W. R. Perrault, T.-J. Poel, R. C. Thomas, Tetrahedron
Lett. 2000, 41, 4301–4305; h) T. A. Mukhtar, G. D. Wright,
Chem. Rev. 2005, 105, 529–542; i) R. Ilg, C. Burschka, D.
Schepmann, B. Wünsch, R. Tacke, Organometallics 2006, 25,
5396–5408; j) S. Yan, M. J. Miller, T. A. Wencewicz, U.
Möllmann, Bioorg. Med. Chem. Lett. 2010, 20, 1302–1305.
[2] a) K.-i. Tominaga, Y. Sasaki, Synlett 2002, 2, 307–309; b) S.-i.
Fujita, H. Kanamaru, H. Senboku, M. Arai, Int. J. Mol. Sci.
[11]
1904
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 1901–1905