Oxidative Homologation of Aldehydes to α-Ketoaldehydes
14 (22 mg, 45%) as a brown solid. Rf (CH/EE, 1:1) = 0.38. HPLC:
(10 mL) was added, and the mixture was extracted with CH2Cl2
tR = 7.61 min (96%);1H NMR (300 MHz, CDCl3): δ = 8.51 (s, 1 (2ϫ15 mL). The combined organic layer was washed with water
H), 8.17–8.08 (m, 2 H), 7.85–7.73 (m, 4 H), 7.60–7.45 (m, 3 H),
7.42–7.35 (m, 1 H), 7.21–7.16 (m, 2 H), 7.43–7.35 (m, 2 H), 5.80
(2ϫ30 mL), dried with Na2SO4, and concentrated in vacuo. The
crude product was purified by LC (EE/CH, 1:2) to give compound
(td, J = 7.9, 5.8 Hz, 1 H), 3.54 (dd, J = 13.4, 5.7 Hz, 1 H), 3.51– 19 (51 mg, 82%) as a yellow solid. Rf (EE/CH = 1:2) = 0.21. HPLC:
1
3.42 (m, 2 H), 3.30 (dd, J = 13.4, 8.2 Hz, 1 H), 3.24–3.09 (m, 2 H),
tR = 8.301 min (95%). H NMR (500 MHz, CDCl3): δ = 8.83 (s, 1
1.87–1.48 (m, 4 H),1.01–0.89 (m, 3 H), 0.84–0.65 (m, 3 H) ppm. H), 8.11–8.07 (m, 1 H), 8.06–8.04 (m, 1 H), 7.79–7.70 (m, 2 H),
13C NMR (75 MHz, CDCl3): δ = 169.8, 165.3, 153.1, 143.6, 142.2, 7.38–7.26 (m, 5 H, Hphenyl), 7.14 (d, J = 7.7 Hz, 1 H, NH), 6.53
141.9, 137.9, 136.1, 134.6, 130.7, 130.1, 129.5, 129.3, 129.2, 128.9,
128.8, 128.6, 127.8, 127.1, 125.2, 54.1, 46.5, 42.2, 21.9, 20.7, 11.5,
11.1 ppm. MS (EI): m/z = 480 [M]+. HRMS (EI): calcd. for
C30H32N4O2 [M]+ 480.2526; found 480.2486.
(d, J = 7.3 Hz, 1 H, NH), 5.45–5.31 (m, 1 H), 5.26 (d, J = 7.6 Hz,
1 H, NH), 5.11 (s, 2 H), 4.61–4.44 (m, 1 H), 4.23–4.01 (m, 1 H),
1.94–1.45 (m, 9 H), 1.05–0.86 (m, 18 H) ppm; 13C NMR (125 MHz,
CDCl3): δ = 172.7, 171.2, 156.3, 156.0, 144.4, 142.0, 141.8, 136.1,
130.2, 129.7, 129.3, 129.0, 128.6, 128.3, 128.1, 67.2, 53.6, 51.9, 51.1,
45.2, 41.4, 40.9, 29.7, 25.0, 24.7, 23.0, 22.9, 22.8, 22.7, 22.3, 22.2,
22.0 ppm. MS (EI): m/z = 575 [M]+. HRMS (EI): calcd. for
C33H45N5O4 [M]+ 575.3472; found 575.3382.
Benzyl (2S)-1-{(2S)-1-[(3S)-2-Hydroxy-1,1-diiodo-5-methylhexan-3-
ylamino]-4-methyl-1-oxopentan-2-ylamino}-4-methyl-1-oxopentan-2-
ylcarbamate (16): iPrMgCl (2.0 m in THF, 1.05 mL, 2.11 mmol)
was added dropwise to a solution of iodoform (829 mg, 2.11 mmol)
in THF (10 mL, abs.) at –78 °C under an argon atmosphere. A
solution of aldehyde 15 (200 mg, 0.42 mmol) in THF (1 mL, abs.)
was added, and the resulting mixture was stirred at the same tem-
perature for 15 min and at 0 °C for 1 h. The mixture was quenched
with aqueous NH4Cl (10 mL, sat.) and extracted with CH2Cl2
(3ϫ20 mL). The combined organic layer was dried with Na2SO4
and concentrated in vacuo. The crude product was purified by LC
(CHCl3/MeOH, 20:1) to give peptidic β-diiodoalcohol 16 (249 mg,
80%) as a yellow solid. Rf (CHCl3/MeOH, 20:1) = 0.60. HPLC: tR
= 8.30 min (9 %), 8.60 min (70 %). Diastereomeric mixture: 1H
NMR (500 MHz, CDCl3): δ = 7.38–7.31 (m, 5 H, Hphenyl), 6.95–
6.92 (m, 1 H, NH), 6.72 (d, J = 6.5 Hz, 1 H, NH), 5.53 (d, J =
7.3 Hz, 1 H, NH), 5.04 (m, 2 H), 4.95 (d, J = 8.3 Hz, 1 H), 4.40–
4.35 (m, 2 H), 4.13 (m, 1 H), 3.61–3.59 (m, 1 H),1.86 (s, OH),
1.56–1.18 (m, 9 H), 0.94–0.83 (m, 18 H) ppm. 13C NMR (CDCl3,
125 MHz): δ = 172.7, 127.6, 156.4, 136.0, 128.6, 128.3, 128.1, 79.1,
78.9, 67.4, 67.3, 53.8, 52.4, 52.1, 49.2, 41.6, 41.3, 40.6, 40.5, 25.0,
24.8, 24.7, 22.9, 22.9, 22.7, 22.4, 22.1, 21.4, –16.5 ppm. MS (ESI):
m/z = 766 [M + Na]+.
Supporting Information (see footnote on the first page of this arti-
1
cle): Copies of the H NMR and 13C NMR spectra.
[1] a) D. Bandyopadhyay, S. Mukherjee, R. R. Rodriguez, B. K.
Banik, Molecules 2010, 15, 4207–4212; b) L. L. Gozalishvili,
T. V. Beryozkina, I. V. Omelchenko, R. I. Zubatyuk, O. V.
Shishkin, N. N. Kolos, Tetrahedron 2008, 64, 8759–8765; c) E.
Grovenstein Jr., W. Postman, J. W. Taylor, J. Org. Chem. 1960,
25, 68–73; d) N. N. Kolos, L. L. Gozalishvili, E. N. Sivokon,
I. V. Knyazeva, Russ. J. Org. Chem. 2009, 45, 119–125; e) prep-
aration of phenazine- and quinoxaline-substituted amino acids
and polypeptides and their diagnostic and therapeutic uses: Z.
Miao, WO 2008/083346 A1, 2008; f) J. S. Yadav, B. V. S. Reddy,
K. Premalatha, K. S. Shankar, Synthesis 2008, 3787–3792.
[2] M. A. Gräwert, N. Gallastegui, M. Stein, B. Schmidt, P.-M.
Kloetzel, R. Huber, M. Groll, Angew. Chem. 2011, 123, 563–
566; Angew. Chem. Int. Ed. 2011, 50, 542–544.
[3] a) P. Darkins, N. McCarthy, M. A. McKervey, T. Ye, J. Chem.
Soc., Chem. Commun. 1993, 1222–1223; b) P. Darkins, M.
Groarke, M. A. McKervey, H. M. Moncrieff, N. McCarthy, M.
Nieuwenhuyzen, J. Chem. Soc. Perkin Trans. 1 2000, 381–389;
c) B. Walker, J. F. Lynas, M. A. Meighan, D. Bromme, Bio-
chem. Biophys. Res. Commun. 2000, 275, 401–405.
[4] a) A. El-Dahshan, S. Nazir, Ahsanullah, F. L. Ansari, J. Rade-
mann, Eur. J. Org. Chem. 2011, 730–739; b) A. El-Dahshan, S.
Weik, J. Rademann, Org. Lett. 2007, 9, 949–952; c) S. Weik, J.
Rademann, Angew. Chem. 2003, 115, 2595; Angew. Chem. Int.
Ed. 2003, 42, 2491–2494.
Benzyl (S)-1-{(S)-1-[(S)-1,1-Diiodo-5-methyl-2-oxohexan-3-yl-
amino]-4-methyl-1-oxopentan-2-ylamino}-4-methyl-1-oxopentan-2-
ylcarbamate (17): To a solution of β-diiodoalcohol 16 (60 mg,
0.08 mmol) in DMSO (5 mL) was added IBX (45 mg, 0.16 mmol),
and the mixture was stirred at room temperature for 15 h. The reac-
tion mixture was quenched with water (50 mL) and MTBE (70 mL)
was added. The precipitate was filtered off, and the organic layer
was extracted with water (2ϫ50 mL), dried with Na2SO4, and con-
centrated in vacuo. The crude product was purified by LC (CH/
EE, 1:1) to give peptidic β-diiodoketone 17 (52 mg, 87%) as a yel-
low solid. HPLC: tR = 8.90 min (70 %), 9.18 min (20 %). Dia-
[5] a) J. M. Concellon, P. L. Bernad, J. A. Perez-Andres, Tetrahe-
dron Lett. 1998, 39, 1409–1412; b) J. M. Concellon, H. Rodrig-
uez-Solla, E. Bardales, M. Huerta, Eur. J. Org. Chem. 2003,
1775–1778.
[6] G. Yin, B. Zhou, X. Meng, A. Wu, Y. Pan, Org. Lett. 2006, 8,
1
2245–2248.
stereomeric mixture: H NMR (500 MHz, MeOD): δ = 7.37–7.31
[7] W. Li, J. Li, D. DeVincentis, T. S. Mansour, Tetrahedron Lett.
2004, 45, 1071–1074.
(m, 6 H), 5.19–5.02 (m, 2 H), 5.00–4.88 (m, 1 H), 4.49–4.28 (m, 2
H),4.27–4.00 (m, 1 H), 1.81–1.51 (m, 9 H), 1.05–0.80 (m, 18 H)
ppm. 13C-NMR (125 MHz, MeOD): δ = 199.4, 199.1, 175.4, 175.3,
174.7, 158.6, 138.2, 129.5, 129.0, 128.8, 67.7, 55.4, 55.2, 54.9, 53.1,
51.3, 42.5, 42.1, 42.0, 41.7, 41.5, 41.2, 26.1, 26.0, 25.9, 25.7, 25.2,
23.7, 23.6, 23.5, 23.4, –29.2 ppm.
[8] H. A. Braun, R. Meusinger, B. Schmidt, Tetrahedron Lett.
2005, 46, 2551–2554.
[9] M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999,
64, 4537–4538.
[10] a) A. Duschek, S. F. Kirsch, Angew. Chem. 2011, 123, 1562–
1590; Angew. Chem. Int. Ed. 2011, 50, 1524–1552; b) H. A.
Braun, S. Umbreen, M. Groll, U. Kuckelkorn, I. Mlynarczuk,
M. E. Wigand, I. Drung, P.-M. Kloetzel, B. Schmidt, J. Biol.
Chem. 2005, 280, 28394–28401.
[11] A. Ozanne, L. Pouysegu, D. Depernet, B. Francois, S. Quideau,
Org. Lett. 2003, 5, 2903–2906.
Benzyl (S)-4-Methyl-1-{(S)-4-methyl-1-[(S)-3-methyl-1-(quinoxalin-
2-yl)butylamino]-1-oxopentan-2-ylamino}-1-oxopentan-2-ylcarb-
amate (19): β-Diiodoketone 17 (80 mg, 0.11 mmol) was dissolved
in DMSO (2.5 mL) and stirred at 50 °C for 24 h (HPLC control).
Glacial acetic acid (1.0 mL) and a solution of o-phenylenediamine
(12 mg, 0.11 mmol) in EtOH (2.0 mL) was added to the reaction
mixture, which was stirred at 70 °C for 1 h. After cooling, water
Received: December 21, 2011
Published Online: January 24, 2012
Eur. J. Org. Chem. 2012, 1439–1447
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1447