at E1/2 = À0.30 (Fig. 4b). Such a dramatic shift in the oxidation
waves of 4 in the presence of Zn-3 is attributed to the slow
oxidation of 4 in the presence of Zn-3. Thus, the electrochemical
studies firmly support the spectroscopic studies and prove the
anti-oxidant behaviour of Zn-3.
To conclude, we synthesized a new triphenylene based
receptor 3 incorporating quinoline moieties which behaves as
a Zn2+ selective chemosensor. The Zn2+ ensemble of 3 shows
anti-oxidant properties and may be used in the real world by
diluting with THF prior to a hydroperoxide assay. This is
proved by different spectral and electrochemical studies using
b-hydroxy naphthaldehyde as an organic template and performing
its Dakin oxidation in the absence and presence of Zn-3.
V.B. is thankful to DST (New Delhi, India) (ref no. SR/S1/
OC-63/2010) and DRDO (Ref. No. ERIP/ER/0703663/M/01/
1105) for financial support.
Fig. 3 Comparison of percentage anti-oxidation activity of Zn-3 with
other commercial anti-oxidants.
References
1 (a) S. R. Powell, J. Nutr., 2000, 130, 1447S; (b) T. M. Bray and
W. J. Bettger, Free Radical Biol. Med., 1990, 8, 281.
2 (a) B. Halliwell and M. Whiteman, Br. J. Pharmacol., 2004,
142, 231; (b) E. Ho and B. N. Ames, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 16770.
3 B. D. Autreaux and M. B. Toledano, Nat. Rev. Mol. Cell Biol.,
2007, 8, 813.
4 (a) H. K. Seitz and F. Stickel, Nat. Rev. Cancer, 2007, 7, 599;
(b) L. Galluzzi, K. Blomgren and G. Kroemer, Nat. Rev. Neurosci.,
2009, 10, 481.
5 (a) M. Kumar, A. Dhir and V. Bhalla, Chem. Commun., 2010,
46, 6744; (b) M. Kumar, R. Kumar and V. Bhalla, Chem. Commun.,
2009, 7384 and references cited therein.
Fig. 4 Cyclic voltammogram of (a) 4 and (b) 4+Zn-3.
6 The receptor 3 is better in comparison to the Zn2+ sensors
reported in the literature (ESIw, S27 and S28).
We also compared the anti-oxidant activity of Zn-3 with five
different commercially available anti-oxidants viz. propyl gallate
(PG), butylated hydroxyl toluene (BHT), butylated hydroxyl
anisole (BHA), a-tocopherol (TP) and sodium ascorbate (SA).19
It was observed that in the presence of 250 ml of 100 mM PG
(see ESIw, S18), BHT (see ESIw, S19), BHA (see ESIw, S20),
TP (see ESIw, S21) and SA (see ESIw, S22) 1025 ml, 1000 ml,
1000 ml, 975 ml and 950 ml of H2O2 were used, respectively, to
quench the fluorescence of b-hydroxy naphthaldehyde 4. The
lower amount of hydrogen peroxide used in the presence of all
these commercially available anti-oxidants in comparison to
Zn-3 shows that the Zn-3 has a better anti-oxidant property.
The percentage oxidation inhibition calculated for Zn-3, PG,
BHT, BHA, TP, SA is 71%, 54%, 54%, 52%, 48% and 47%
respectively (Fig. 3) (see ESIw, S5).
7 (a) S. Aoki and E. Kimura, Chem. Rev., 2004, 104, 769;
(b) L. Cronin and P. H. Walton, Chem. Commun., 2003, 1572.
8 E. Kimura, Acc. Chem. Res., 2001, 34, 171.
9 (a) B. Colasson, N. Le Poul, Y. Le Mest and O. Reinaud, Inorg. Chem.,
2011, 50, 10985; (b) K. Kano, M. Kondo, H. Inoue, H. Kitagishi,
B. Colasson and O. Reinaud, Inorg. Chem., 2011, 50, 6353.
10 V. Bhalla, R. Tejpal, M. Kumar, R. K. Puri and R. K. Mahajan,
Tetrahedron Lett., 2009, 50, 2649.
11 (a) I. Aoki, T. Sakaki and S. Shinkai, J. Chem. Soc., Chem.
Commun., 1992, 730; (b) J. H. Bu, Q. Y. Zheng, C. F. Chen and
Z. T. Huang, Org. Lett., 2004, 6, 3301.
12 H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbuhler,
Talanta, 1985, 32, 95.
13 G. L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712A.
14 J. N. Demas and G. A. Grosby, J. Phys. Chem., 1971, 75, 991.
15 K. Reimer and F. Tiemann, Ber. Dtsch. Chem. Ges., 1876, 9, 824.
16 (a) H. D. Dakin, J. Am. Chem. Soc., 1909, 42, 477;
(b) H. D. Dakin, Org. Synth., 1923, 3, 28.
The anti-oxidative nature of Zn-3 observed from the above
17 (a) H. Maeda, Y. Fukuyasu, S. Yoshida, M. Fukuda, K. Saeki,
H. Matsuno, Y. Yamauchi, K. Yoshida, K. Hirata and
K. Miyamoto, Angew. Chem., Int. Ed., 2004, 43, 2389;
(b) E. W. Miller, O. Tulyathan, E. Y. Isacoff and C. Chang,
J. Nat. Chem. Biol., 2007, 3, 263.
18 (a) P. T. Chou, J. H. Liao, C. Y. Wei, C. Y. Yang, W. S. Yu and
Y. H. Chou, J. Am. Chem. Soc., 2000, 112, 986; (b) A. Kyrychenko,
J. Herbich, M. Izydorzak, F. Wu, R. P. Thummel and J. Waluk,
J. Am. Chem. Soc., 1990, 112, 11179.
spectroscopic studies was further confirmed from electrochemical
studies. The cyclic voltammogram of 4 [THF, c = 1 Â 10À3
,
[(nBu)4N]ClO4 as supporting electrolyte, using a glassy carbon
working electrode, a (Ag/Ag+) reference electrode, and a Pt wire
counter electrode] exhibits two electrochemical oxidation waves
at E1/2 = À0.175 and E1/2 = À0.70 (Fig. 4). The cyclic
voltammogram of 4+Zn-3 under the same conditions showed
one oxidation wave at E1/2 = À0.13 and a reduction wave
19 European Directive 95/2/EC on food additives, 1995, 1–61.
c
4724 Chem. Commun., 2012, 48, 4722–4724
This journal is The Royal Society of Chemistry 2012