To increase the reactivity of nonextended aromatic
systems for cross-coupling, a new strategy was required.
We developed a traceless directing group that would
accelerate oxidative addition but not be present in the
reaction products, by incorporating the directing group on
the ether substituent (Scheme 1b). We envisioned that
ethers that contain pendant ligands would chelate the
magnesium salts present in the reaction mixture, thus
activating the CÀO bond for oxidative addition and
accelerating the rate of the desired cross-coupling reaction.
Unlike typical directed reactions where the directing func-
tional group is present in the reaction product, this strategy
allows for a wider substrate scope and precludes the
necessity for further modification of the product to remove
the directing group.7
promise, identification of new medicinal agents based on
the 1,1-diarylalkane framework is held back because gen-
eral methods for their enantioselective preparation do not
exist. These compounds are typically prepared and tested
for biological activity as racemic mixtures or are resolved
using classical resolution by crystallization of diastereo-
meric salts. While there have been creative approaches to
enantioselective syntheses of these compounds,9 control of
stereochemistry without directing groups that must later
be removed remains a challenge.
Scheme 1. Traceless Directing Group Used To Accelerate Oxi-
dative Addition
Figure 1. Bioactive diarylalkanes.
By starting with enantioenriched ethers and utilizing a
traceless directing group for substrate activation, we envi-
sioned a straightforward strategy for enantioselective
synthesis of 1,1-diarylethanes. This methodology does
not rely on steric bulk or electronic differentiation at the
stereocenter because stereochemistry is set before the
cross-coupling reaction, allowing diarylethanes with sub-
stitution far removed from the stereocenter to be synthe-
sized in high enantiopurity.
We examined cross-coupling reactions of diphenyl carbinol
derivatives to evaluate the influence of the ether substituent on
the cross-coupling (Table 1). 2-Methoxyethyl ether 5 reacts
more rapidly than methyl, MOM, or MEM ethers (cf. entries
1À4). These results are consistent with acceleration of oxida-
tive addition by formation of an optimal five-membered ring
chelate with magnesium salts (Scheme 1b).
Once we had identified a suitable directing group, we
optimized the reaction conditions to further improve the
yield of the desired product (Table 1). While other ligands
were examined, DPEphos generally provided the highest
yield (e.g., entries 4À6).10 The precatalyst, Ni(cod)2, could
be replaced with more stable Ni(acac)2 providing an im-
proved yield (entry 7). Extending the reaction time to 48 h
further improved the yield to 80% (entry 8).
As a test application to determine the feasibility of this
strategy, we targeted the enantiospecific synthesis of 1,1-
diarylethanes (Figure 1). 1,1-Diarylalkanes are active
against cancer, osteoporosis, smallpox, tuberculosis, and
insomnia.8 Furthermore, the diarylmethine pharmaco-
phore is present in natural products and drugs including
podophyllotoxin, peperomin B, kadangustin J, zoloft,
tolterodine, lasofoxifene, and centchroman. Despite their
(7) For a representative example of an alternative type of traceless
directing group, where a functional group is used first as a directing
group and second as a leaving group, see: Wang, C.; Rakshit, S.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 14006.
(8) (a) For a discussion, see: Kainuma, M.; Kasuga, J.-i.; Hosoda, S.;
Wakabayashi, K.-i.; Tanatani, A.; Nagasawa, K.; Miyachi, H.;
Makishima, M.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2006, 16,
3213. (b) Anti-lung cancer agent, see: Alami, M.; Messaoudi, S.; Hamze,
A.; Provot, O.; Brion, J.-D.; Liu, J.-M.; Bignon, J.; Bakala, J. Patent
WO/2009/147217 A1, Dec 10, 2009. (c) Anti-viral agent: Cheltsov, A. V.;
Aoyagi, M.; Aleshin, A.; Yu, E. C.-W.; Gilliland, T.; Zhai, D.; Bobkov,
A. A.; Reed, J. C.; Liddington, R. C.; Abagyan, R. J. Med. Chem. 2010,
53, 3899. (d) Anti-prostate cancer agent: Hu, Q. Z.; Yin, L. N.; Jagusch,
C.; Hille, U. E.; Hartmann, R. W. J. Med. Chem. 2010, 53, 5049. (e)
(9) For representative examples, see: (a) Hatanaka, Y.; Hiyama, T.
J. Am. Chem. Soc. 1990, 112, 7793. (a) Wang, X.; Guram, A.; Caille, S.;
Hu, J.; Preston, J. P.; Ronk, M.; Walker, S. Org. Lett. 2011, 13, 1881. (b)
Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden, C. M. J. Am.
Chem. Soc. 2009, 131, 5024. (c) Paquin, J.-F.; Defieber, C.; Stephenson,
C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850. (d) Nave,
S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc.
2010, 132, 17096. (e) Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.;
Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.;
Miller, S. J. J. Am. Chem. Soc. 2006, 128, 16454. (f) Bolshan, Y.; Chen,
C.-y.; Chilenski, J. R.; Gosselin, F.; Mathre, D. J.; O’Shea, P. D.; Roy,
A.; Tillyer, R. D. Org. Lett. 2004, 6, 111. (g) Podhajsky, S. M.; Iwai, Y.;
Cook-Sneathen, A.; Sigman, M. S. Tetrahedron 2011, 67, 4435.
(10) Alternative ligands, including Xantphos, rac-BINAP, dppb, and
dppf provided <5% product.
ꢀ
Messaoudi, S.; Hamze, A.; Provot, O.; Treguier, B.; De Losada, J. R.;
Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.;
Brion, J.-D.; Alami, M. Chem. Med. Chem. 2011, 6, 488. (f) Shagufta;
Srivastava, A. K.; Sharma, R.; Mishra, R.; Balapure, A. K.; Murthy,
P. S. R.; Panda, G. Bioorg. Med. Chem. 2006, 14, 1497. (g) Pathak, T. P.;
Gligorich, K. M.; Welm, B. E.; Sigman, M. S. J. Am. Chem. Soc. 2010,
132, 7870. (h) Moree, W. J.; Li, B. F.; Zamani-Kord, S.; Yu, J. H.; Coon,
T.; Huang, C.; Marinkovic, D.; Tucci, F. C.; Malany, S.; Bradbury,
M. J.; Hernandez, L. M.; Wen, J. Y.; Wang, H.; Hoare, S. R. J.; Petroski,
R. E.; Jalali, K.; Yang, C.; Sacaan, A.; Madan, A.; Crowe, P. D.; Beaton,
G. Bioorg. Med. Chem. Lett. 2010, 20, 5874.
4294
Org. Lett., Vol. 14, No. 16, 2012