Notes and references
y During initial investigations, amine 11 readily performed double
alkylation processes when exposed to conditions similar to those
shown in Scheme 1.
1 A. Mazurov, L. Miao, Y.-D. Xiao, P. S. Hammond, C. H. Miller,
S. R. Akireddy, V. S. Murthy, R. C. Whitaker, S. R. Breining and
M. S. Melvin, PCT Int. Appl., 2008, Application: WO 2008-057938.
2 A. Bjoere, D. Cladingboel, G. Ensor, A. Herring, J. Kajanus,
R. Lundqvist, C. Olsson, C.-G. Sigfridsson and G. Strandlund,
PCT Int. Appl., 2006, Application: WO 2006-SE688 20060612.
3 A. Zask, J. A. Kaplan, J. C. Verheijen, K. J. Curran, D. J. Richard
and S. Ayral-Kaloustian, U.S. Pat. Appl. Publ., 2009, Application:
US 2008-251712 20081015.
Scheme 6 Conversion of oxabispidine acetals to diamines 18.
4 M. Furber, L. Alcaraz, J. E. Bent, A. Beyerbach, K. Bowers,
M. Braddock, M. V. Caffrey, D. Cladingboel, J. Collington,
D. K. Donald, M. Fagura, F. Ince, E. C. Kinchin, C. Laurent,
M. Lawson, T. J. Luker, M. M. P. Mortimore, A. D. Pimm,
R. J. Riley, N. Roberts, M. Robertson, J. Theaker, P. V. Thorne,
R. Weaver, P. Webborn and P. Willis, J. Med. Chem., 2007,
50, 5882.
5 C. Chan, J. N. Hamblin, H. A. Kelly, N. P. King, A. M. Mason,
V. K. Patel, S. Senger, G. P. Shah, N. S. Watson, H. E. Weston,
C. Whitworth and R. J. Young, PCT Int. Appl., 2002, Application:
WO 2002-GB2586 20020606.
6 D. Hoppe and T. Hense, Angew. Chem. Int. Ed., 1997, 36,
2282; O. Chuzel and O. Riant, Top. Organomet. Chem., 2005,
15, 59.
7 For examples of the use of (ꢀ)-sparteine and (+)-sparteine as
chiral ligands, see: P. O’Brien, Chem. Commun., 2008, 655.
8 M. J. Dearden, C. R. Firkin, J.-P. R. Hermet and P. O’Brien,
J. Am. Chem. Soc., 2002, 124, 11870; A. J. Dixon, M. J. McGrath
and P. O’Brien, Org. Synth., 2006, 83, 141.
9 M. Breuning and M. Steiner, Synthesis, 2007, 1702; M. Breuning
and M. Steiner, Tetrahedron: Asymmetry, 2008, 19, 1978;
M. Breuning, M. Steiner, C. Mehler, A. Paasche and D. Hein,
J. Org. Chem., 2008, 74, 1407.
10 L. Cheema, D. Cladingboel and R. Sinclair, PCT Int. Appl., 2002,
Application: WO 2002-08360; L. Cheema and D. Cladingboel,
PCT Int. Appl., 2002, Application: WO 2002-083691; D. Cladingboel,
PCT Int. Appl., 2004, Application: WO 2004-035592.
11 D. M. Gill, PCT Int. Appl., 2003, Application: WO 2003-045956;
D. M. Gill, H. Holness and P. S. Keegan, Abstracts of Papers,
232nd ACS National Meeting, San Francisco, 2006.
12 For other examples of such cyclisation reactions, see C. Chan,
S. Zheng, B. Zhou, J. Guo, R. M. Heid, B. J. D. Wright and
S. Danishefsky, Angew. Chem., Int. Ed., 2006, 45, 1749;
K. C. Nicolaou, B. S. Safina, M. Zak, S. H. Lee, M. Nevalainen,
M. Bella, A. A. Estrada, C. Funke, F. J. Zecri and S. Bulat, J. Am.
Chem. Soc., 2005, 127, 11159.
13 For intermolecular reactions of oxazines with electrophiles, see:
L. Eberson, M. Malmberg and K. Nyberg, Acta Chem. Scand., Ser.
B, 1984, 38b, 345.
Scheme 7 Elaboration of 13a to deliver an array of amine substitution.
Reaction Conditions a: LAH, Et2O, 20, 72%; b: (i) MeI, K2CO3, CH2Cl2,
73%; (ii) H2, Pd/C, MeOH, 21, 92%.
oxabispidines 18a, c, e, and g (R = Ph; p-MeOC6H4; tBu; and
nBu, respectively) in good yields over two steps.
Compound 13a was chosen as a vehicle to demonstrate the
inherent flexibility of this class of intermediate and, as shown
in Scheme 7, was efficiently converted to bis-2y amine 19, and
both complementary monomethyl compounds 20 and 21.
Having now established an efficient route to optically-
enriched oxabispidine structures, the relationship of these
species with sparteine-type molecular architectures is worthy
of note. As recently shown by O’Brien, sparteine surrogates
(without the D ring unit) are superior to the full sparteine
structure within certain asymmetric applications.20 However,
access to (ꢀ)-sparteine surrogates is not presently available. In
relation to this, structures 13/16 map directly onto the B/C
rings within (ꢀ)-sparteine 2, whilst providing functionality to
allow further structural manipulations. Furthermore, employ-
ment of the commercially available enantiomeric (R)-glycidyl
phthalimide, (R)-6, will deliver the opposite chiral oxabispidine
series, equivalent to the known (+)-sparteine surrogates.7
These features add further to the preparative flexibility and
utility of the routes developed here.
14 H. Ito, Y. Ikeuchi, T. Taguchi, Y. Hanzawa and M. Shiro, J. Am.
Chem. Soc., 1994, 116, 5469.
In summary, a range of C-substituted oxabispidines have
been prepared from a commercially available chiral building
block, using a novel stereoselective intramolecular Mannich
reaction. The route is highly modular and amenable to creation
of a wide range of analogues where diversity is incorporated late
in the synthetic sequence. Further studies directed towards the
stereoselective synthesis of other classes of bridged heterobicyclic
compounds with potential pharmaceutical and catalytic appli-
cations are ongoing within our laboratories.
15 A. Commercon and G. Ponsinet, Tetrahedron Lett., 1985, 26, 4093.
16 T. Sasaki, K. Minamoto and H. Itoh, J. Org. Chem., 1978,
43, 2320.
17 S. E. Sen and S. L. Roach, Synthesis, 1995, 756.
18 Crystallographic data for the compound reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication CCDC 835119. Copies of
the data can be obtained free of charge on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033;
email: deposit@ccdc.cam.ac.uk). Further crystallographic infor-
mation is available within the ESI.
19 A. R. Katritzky, Tetrahedron, 1991, 47, 2683.
We thank Ms T. Weber and Mr K. Munro (Univ. of
Strathclyde) and Drs A. R. Burns and J. Pavey (AZ) for additional
contributions, and the EPSRC Mass Spectrometry Service,
Univ. of Wales, Swansea, and H. Pancholi (AZ) for analyses.
20 G. Carbone, P. O’Brien, K. R. Campos, I. Coldham and
A. Sanderson, J. Am. Chem. Soc., 2010, 132, 7260; D. Stead,
G. Carbone, P. O’Brien and G. Hilmersson, J. Am. Chem. Soc.,
2010, 132, 15445.
c
4838 Chem. Commun., 2012, 48, 4836–4838
This journal is The Royal Society of Chemistry 2012