4 L. Fulop, B. Penke and M. Zarandi, J. Pept. Sci., 2001, 7, 397–401.
Conclusions
5 P. D. Edwards, R. C. Mauger, K. M. Cottrell, F. X. Morris, K. K. Pine,
M. A. Sylvester, C. W. Scott and S. T. Furlong, Bioorg. Med. Chem. Lett.,
2000, 10, 2291–2294.
6 K. T. Nguyen, X. B. Hu and D. H. Pei, Bioorg. Chem., 2004, 32, 178–
191.
7 E. Onitsuka, T. Okumura, H. Murakami, N. Nishino and F. Morimatsu,
Biosci., Biotechnol., Biochem., 2006, 70, 2836–2843.
8 V. F. Pozdnev, Int. J. Pept. Protein Res., 1994, 44, 36–48.
9 Z. Georgoussi, A. Evangelopoulos, M. G. Ludwig and Heilmeyer,
Biochem. Pharmacol., 1986, 35, 4571–4573.
10 A. R. Morales, K. J. Schafer-Hales, A. I. Marcus and K. D. Belfield, Bio-
conjugate Chem., 2008, 19, 2559–2567.
11 W. Y. Leung, P. A. Trobridge, R. P. Haugland and F. Mao, Bioorg. Med.
Chem. Lett., 1999, 9, 2229–2232.
12 X. Liu, H. Wang, S. C. Liang and H. S. Zhang, Chromatographia, 2001,
53, 326–330.
13 G. Weber, Biochem. J., 1952, 51, 155–167.
In summary, the introduction of a furan moiety in peptides via
solid phase peptide synthesis and subsequent release of the furan
containing peptides in solution was optimized. Next to C-term-
inal and internal modification of the peptide with a furan moiety
proceeding smoothly using N-α-Fmoc-β-(2-furyl)-L-alanine, N-
terminally furan-modified peptides can be obtained in pure form
through capping of the peptide with an aromatic moiety in order
to protect the furan ring against degradation during acidolytic
cleavage. It was further shown that the furan moiety in the result-
ing peptides can be selectively converted into a reactive enal
upon oxidation with NBS. In that sense current methodology
allows for easy and site selective introduction of a caged electro-
philic functionality into peptides allowing oxidation triggered
activation at any desired moment for further labeling or conju-
gation purposes.
14 S. C. Beale, Y. Z. Hsieh, D. Wiesler and M. Novotny, J. Chromatogr., A,
1990, 499, 579–587.
15 J. P. Liu, Y. Z. Hsieh, D. Wiesler and M. Novotny, Anal. Chem., 1991,
63, 408–412.
16 K. Tyagarajan, E. Pretzer and J. E. Wiktorowicz, Electrophoresis, 2003,
24, 2348–2358.
17 J. E. T. Corrie, J. Chem. Soc., Perkin Trans. 1, 1994, 2975–2982.
18 P. Johannesson, G. Lindeberg, W. M. Tong, A. Gogoll, A. Karlen and
A. Hallberg, J. Med. Chem., 1999, 42, 601–608.
19 J. C. Spetzler and T. Hoeg-Jensen, Tetrahedron Lett., 2002, 43, 2303–
2306.
20 D. Verzele, L. L. G. Carrette and A. Madder, Drug Discovery Today:
Technol., 2010, 7, e115–e123.
21 R. Eckel, S. D. Wilking, A. Becker, N. Sewald, R. Ros and
D. Anselmetti, Angew. Chem., Int. Ed., 2005, 44, 3921–3924.
22 A. Schulz, A. Busmann, E. Kluver, M. Schnebel and K. Adermann,
Protein Pept. Lett., 2004, 11, 601–606.
Notes and references
1 (a) F. L. van Delft, A. M. Jawalekar, M. O. de Beeck and A. Madder,
Chem. Commun., 2011, 47, 2796–2798; (b) A. Madder, K. Stevens,
D. D. Claeys, S. Catak, S. Figaroli, M. Hocek, J. M. Tromp, S. Schurch
and V. Van Speybroeck, Chem.–Eur. J., 2011, 17, 6940–6953;
(c) A. Madder and M. Op de Beeck, J. Am. Chem. Soc., 2011, 133, 796–
807; (d) K. Stevens and A. Madder, Nucleic Acids Res., 2009, 37, 1555–
1565.
2 A. Deceuninck and A. Madder, Chem. Commun., 2009, 340–342.
3 M. J. Little, D. M. Paquette, M. D. Harvey and P. R. Banks, Anal. Chim.
Acta, 1997, 339, 279–288.
4002 | Org. Biomol. Chem., 2012, 10, 3999–4002
This journal is © The Royal Society of Chemistry 2012