78
P.I. Aparna, B.R. Bhat / Journal of Molecular Catalysis A: Chemical 358 (2012) 73–78
4. Conclusions
[8] T. Ishikawa, A. Ogawa, T. Hirao, Organometallics 17 (1998) 5713–5716.
[9] A.S. Demir, O. Reis, M. Emrullahoglu, J. Org. Chem. 68 (2003) 10130–10134.
[10] W. Liu, A. Lei, Tetrahedron Lett. 49 (2008) 610–613.
[11] H. Yoshida, Y. Yamaryo, J. Ohshita, A. Kunai, Tetrahedron Lett. 44 (2003)
1541–1544.
[12] A. Krasovskiy, A. Tishkov, V. Amo, H. Mayr, P. Knochel, Angew. Chem. Int. Ed.
45 (2006) 5010–5014.
[13] M.S. Maji, A. Studer, Synthesis 14 (2009) 2467–2470.
[14] M.S. Maji, T. Pfeifer, A. Studer, Chem. Eur. J. 16 (2010) 5872–5875.
[15] M.S. Maji, T. Pfeifer, A. Studer, Angew. Chem. Int. Ed. 47 (2008) 9547–9550.
[16] S.Y.W. Lau, G. Hughes, P.D. O’Shea, I.W. Davies, Org. Lett. 9 (2007) 2239–
2242.
[17] T. Hatakeyama, S. Hashimoto, K. Ishizuka, M. Nakamura, J. Am. Chem. Soc. 131
(2009) 11949–21196.
[18] V.K. Srivastava, R.S. Shukla, H.C. Bajaj, R.V. Jasra, Appl. Catal. A: Gen. 282 (2005)
31–38.
[19] N. Mizuno, K. Yamaguchi, Catal. Today 132 (2008) 18–26.
[20] A.I. Vogel, Textbook of Practical Organic Chemistry, fifth ed., Longman, London,
1989.
[21] T.A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 28 (1966) 945–956.
[22] N.P. Priya, S. Arunachalam, A. Manimaran, D. Muthupriya, C. Jayabalakrishnan,
Spectrochim. Acta A 72 (2009) 670–676.
In conclusion, newly synthesized octahedral ruthenium(III)
complex has been effectively applied for the catalytic transfor-
mation of various aryl halides to the corresponding symmetric
biaryl in good to high yields. Present catalytic procedure of an
in situ formation of the Grignard reagent makes the biaryl synthesis
route much simpler, energy efficient, economical and of great syn-
thetic utility. The oxidant atmospheric molecular oxygen makes
the coupling reaction environmental friendly and cost effective.
Peroxo-ruthenium(IV) active species is responsible for the effi-
ciency of present catalytic system. The small amount of catalyst,
chemoselectivity and eco-friendly procedures makes the reaction
system readily amenable to a large-scale synthesis of biaryl com-
pounds.
Acknowledgments
[23] M.W. Schoonover, C.P. Kubiak, R. Eisenberg, Inorg. Chem. 17 (1978) 3050–
3055.
Ms. Aparna, P.I. thanks National Institute of Technology Kar-
nataka, Surathkal for research fellowship. The authors thank Indian
Institute of Science, Bangalore, for NMR analysis.
[24] R. Raveendran, S. Pal, Polyhedron 27 (2008) 655–662.
[25] A.M. Bond, R. Colton, D.R. Mann, Inorg. Chem. 29 (1990) 4665–4671.
[26] A. Basu, T.G. Kasar, N.Y. Sapre, Inorg. Chem. 27 (1988) 4539–4542.
[27] C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 111 (2011) 1780–1824.
[28] A. Hussain, R.S. Shukla, R.B. Thorat, H.J. Padhiyar, K.N. Bhatt, J. Mol. Catal. A:
Chem. 193 (2003) 1–12.
[29] A. Ourari, M. Khelafi, D. Aggoun, G. Bouet, M.A. Khan, Adv. Phys. Chem. 2011
(2011) 1–11.
[30] G. Cahiez, A. Moyeux, J. Buendia, C. Duplais, J. Am. Chem. Soc. 129 (2007)
13788–13789.
[31] T. Joseph, D.P. Sawant, C.S. Gopinath, S.B. Halligudi, J. Mol. Catal. A: Chem. 184
(2002) 289–299.
[32] B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457–2474.
[33] C. Adamo, C. Amatore, I. Ciofini, A. Jutand, H. Lakmini, J. Am. Chem. 128 (2006)
6829–6836.
References
[1] J.P. Corbet, G. Mignani, Chem. Rev. 106 (2006) 2651–2710.
[2] S.S. Zhu, T.M. Swager, Adv. Mater. 8 (1996) 497–500.
[3] D. Alberico, M.E. Scott, M. Lautens, Chem. Rev. 107 (2007) 174–238.
[4] G. Cahiez, A. Moyeux, Chem. Rev. 110 (2010) 1435–1462.
[5] G. Cahiez, O. Gager, F. Lecomte, Org. Lett. 10 (2008) 5255–5256.
[6] M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 126 (2004)
3686–3687.
[7] A. Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, Tetrahedron 56 (2000)
9601–9605.