Organometallics
Communication
Scheme 2. Hydrosilylation Reaction of 1-Octene with
PhSiH3 Catalyzed by 0.3 and 0.05 mol % of an Fe Complex
ACKNOWLEDGMENTS
■
This work was supported by a Challenging Exploratory
Research grant (No. 23655056) from the Ministry of
Education, Culture, Sports, Science and Technology of Japan
and by the Innovation Promotion Program in 2010 from
NEDO.
REFERENCES
■
(1) (a) Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374. (b) Gillard,
S.; Renaud, J.-L. ChemSusChem 2008, 1, 505. (c) Marciniec, B. In
Hydrosilylation; Marciniec, B., Ed.; Springer: Berlin, 2009. (d) Naka-
zawa, H.; Itazaki, M. Fe-H Complexes in Catalysis. In Iron Catalysis;
Plietker, B., Ed.; Springer: New York, 2011.
reported to date. In contrast, the reaction of 1-hexene with
PhSiH3 at 50 °C catalyzed by 7-FeBr2 produced Ph(hexyl)SiH2
and that by 9-FeBr2 produced a mixture of Ph(hexyl)SiH2 and
Ph(hexyl)2SiH, and no selectivity was observed even by
changing the amount of 9-FeBr2 (Table 4). Suitable selection
of the kind and the amount of the catalyst precursor and high
reaction temperature are required to achieve the selective
single/double alkylation.
(2) (a) Speier, J. L. Adv. Organomet. Chem. 1979, 17, 407.
(b) Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565. (c) Denmark,
S. E.; Wang, Z. Org. Lett. 2001, 3, 1073. (d) Itami, K.; Matsumoto, K.;
Nishio, A.; Yoshida, J. J. Org. Chem. 2002, 67, 2645. (e) Denmark, S.
E.; Wang, Z. Org. Synth. 2005, 81, 54.
(3) Nesmeyanov, A. N.; Freidlina, R. Kh.; Chukovskaya, E. C.;
Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61.
(4) Schroeder, M, A.; Wrighton., M. S. J. Organomet. Chem. 1977,
128, 345.
Table 4. Double-Alkylation Reaction of Olefins with PhSiH3
Catalyzed by 0.3 and 0.05 mol % of 7-FeBr2 and 9-FeBr2 for
24 h
(5) Randolph, C. L.; Wrighton, M. S. J. Am. Chem. Soc. 1986, 108,
3366.
product (TON)
Fe cat. (amt
(mol %))
temp
(6) Naumov, R. N.; Itazaki, M.; Nakazawa, H. J. Am. Chem. Soc. 2012,
134, 804.
(7) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet.
Chem. 1993, 456, 45.
(8) Adams, R. D.; Bunz, U.; Captain, B.; Fu, W.; Steffen, W. J.
Organomet. Chem. 2000, 614−615, 75.
(9) Marciniec, B.; Majchrzak, M. Inorg. Chem. Commun. 2000, 3, 371.
(10) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc.
2004, 126, 13794. (b) Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-
P.; Lobkovsky, E.; Chirik, P. J. Organometallics 2006, 25, 4269.
(c) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis,
K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
(11) During our investigation, Chirik et al. submitted patents
concerning hydrosilylation iron catalysts with a terpyridine ligand.
(a) Delis, J. G. P.; Chirik, P. J.; Tondreau, A. M. US 2011/0009565A1.
(b) Delis, J. G. P.; Chirik, P. J.; Tondreau, A. M. WO 2011/006049A1.
Examples listed in their patents are concerned with the catalytic
activities of iron complexes with a nonsubstituted terpyridine ligand.
As we found that iron complexes with terpyridine derivatives with
substituents at the 6,6″- and 6,5″-positions exhibited noticeable
catalytic activities, we report our results here.
entry
1
olefin
(°C)
7-FeBr2
(0.3)
1-hexene
50 Ph(hexyl)
SiH2 (225)
Ph(hexyl)2SiH
(0)
2
3
4
9-FeBr2
(0.3)
1-hexene
1-hexene
1-hexene
50 Ph(hexyl)
SiH2 (179)
Ph(hexyl)2SiH
(128)
7-FeBr2
(0.05)
50 Ph(hexyl)
SiH2 (601)
Ph(hexyl)2SiH
(0)
9-FeBr2
(0.05)
50 Ph(hexyl)
SiH2
Ph(hexyl)2SiH
(139)
(1207)
5
6
7
7-FeBr2
(0.3)
1 -octene 100 Ph(octyl)
SiH2 (0)
Ph(octyl)2SiH
(333)
9-FeBr2
(0.3)
1 -octene 100 Ph(octyl)
SiH2 (0)
Ph(octyl)2SiH
(333)
7-FeBr2
(0.05)
1 -octene 100 Ph(octyl)
Ph(octyl)2SiH
(0)
SiH2
(1458)
8
9-FeBr2
(0.05)
1 -octene 100 Ph(octyl)
Ph(octyl)2SiH
(0)
SiH2
(1533)
In conclusion, we found that iron complexes bearing newly
prepared 2,2′:6′,2″-terpy derivatives with substituents at the 6-
and 5″-/6″-positions, especially those bearing unsymmetrically
disubstituted terpy, exhibit high catalytic activity for hydro-
silylation of olefins with hydrosilanes. In the reaction of 1-
octene with PhSiH3 at 100 °C selective single/double
hydrosilylation was achieved by changing the amount of the
iron catalyst.
(12) Nakayama, Y.; Baba, Y.; Yasuda, H.; Kawakita, K.; Ueyama, N.
Macromolecules 2003, 36, 7953.
(13) (a) Boddien, A.; Loges, B.; Gartner, F.; Torborg, C.; Fumino,
̈
K.; Junge, H.; Ludwig, R.; Beller, M. J. Am. Chem. Soc. 2010, 132, 8924.
(b) Benson, E. E.; Rheingold, L.; Kubiak, C. P. Inorg. Chem. 2010, 49,
1458.
(14) The molar ratio of hydrosilane and 1-hexane was found to be
important in this reaction system. The reaction with a ratio of 1:2
produced some unidentified byproducts. Changing the ratio from 1:2
to 1:8 and 1:16 caused a decrease in the amount of the byproduct, and
when a ratio of 1:32 was used, no byproducts were observed.
(15) For example, see: (a) Takahashi, T.; Hasegawa, M.; Suzuki, N.;
Saburi, M.; Rousset, C. J.; Fanwick, P. E.; Negishi, E. J. Am. Chem. Soc.
1991, 113, 8564. (b) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am.
Chem. Soc. 1997, 119, 906. (c) Ge, S.; Meetsma, A.; Hessen, B.
Organometallics 2008, 27, 3131. (d) Konkol, M.; Kondracka, M.; Voth,
P.; Spaniol, T. P.; Okuda, J. Organometallics 2008, 27, 3774.
(e) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 9226.
(16) Huheey, J. E. In Inorganic Chemistry, 3rd ed.; Harper & Row:
New York, 1983.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, tables, and CIF files giving detailed experimental
procedures, characterization data for the products, and
crystallographic data. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
3828
dx.doi.org/10.1021/om300279t | Organometallics 2012, 31, 3825−3828