Chemical Research in Toxicology
Article
sion tomography imaging tracer targeted to central nervous system
acetylcholinesterase. ACS Chem. Neurosci. 5, 519−524.
ase; PBS, phosphate-buffered saline; PNP, para-nitrophenoxy;
OP, organophosphate
(20) Ahmed, S. K., Belabassi, Y., Sankaranarayanan, L., Chao, C.-K.,
Gerdes, J. M., and Thompson, C. M. (2013) Synthesis and Anti-
Acetylcholinesterase Properties of Novel β- and γ-Substituted Alkoxy
Organophosphonates. Bioorg. Med. Chem. Lett. 23, 2048−2051.
(21) Forsberg, A., and Puu, G. (1984) Kinetics for the inhibition of
acetylcholinesterase from the electric eel by some organophosphates
and carbamates. Eur. J. Biochem. 140, 153−156.
(22) Kuca, K., Cabal, J., Jun, D., Musilek, K., Soukup, O., Pohanka,
M., Pejchal, J., Oh, K. A., Yang, G. Y., and Jung, Y. S. (2010)
Reactivation of VX-inhibited AChE by novel oximes having two
oxygen atoms in the linker. Environ. Toxicol. Pharmacol. 30, 85−87.
(23) Meek, E. C., Chambers, H. W., Coban, A., Funck, K. E., Pringle,
R. B., Ross, M. K., and Chambers, J. E. (2012) Synthesis and in vitro
and in vivo inhibition potencies of highly relevant nerve agent
surrogates. Toxicol. Sci. 126, 525−533.
(24) Dorandeu, F., Foquin, A., Briot, R., Delacour, C., Denis, J.,
Alonso, A., Froment, M. T., Renault, F., Lallement, G., and Masson, P.
(2008) An unexpected plasma cholinesterase activity rebound after
challenge with a high dose of the nerve agent VX. Toxicology 248,
151−157.
(25) Sidell, F. R., and Groff, W. A. (1974) The reactivatibility of
cholinesterase inhibited by VX and sarin in man. Toxicol. Appl.
Pharmacol. 27, 241−252.
(26) Kuca, K., Hrabinova, M., Soukup, O., Tobin, G., Karasova, J.,
and Pohanka, M. (2010) Pralidoxime–the gold standard of
acetylcholinesterase reactivators–reactivation in vitro efficacy. Bratisl.
Lek. Listy 111, 502−504.
(27) Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feather-
Stone, R. M. (1961) A new and rapid colorimetric determination of
acetylcholinesterase activity. Biochem. Pharmacol. 7, 88−95.
(28) Berner, S., Mtihlegger, K., and Seliger, H. (1988) The reaction
of Tetrazole with Phosphoramidites as a Model for the Nucleotide
Coupling Step. Nucleosides Nucleotides 7, 763−767.
REFERENCES
■
(1) Bajgar, J. (2004) Organophosphates/ nerve agent poisoning:
mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin.
Chem. 38, 151−216.
(2) Barthold, C. L., and Schier, J. G. (2005) Organic phosphorus
compounds–nerve agents. Crit. Care Clin. 21, 673−689.
(3) Eto, M. (1974) Organophosphorus Pesticides; Organic and
Biological Chemistry, CRC Press, Boca Raton, FL.
(4) Kovacic, P. (2003) Mechanism of organophosphates (nerve gases
and pesticides) and antidotes: Electron transfer and oxidative stress.
Curr. Med. Chem. 10, 2705−2709.
(5) Morita, H. (1995) Neurotoxicity of nerve agents. Brain Nerve 47,
1129−1134.
(6) Satar, S., Satar, D., Kirim, S., and Leventerler, H. (2005) Effects of
Acute Organophosphate Poisoning on Thyroid Hormones in Rats.
Am. J. Ther. 12, 238−242.
(7) Taylor, P. (1996) Anticholinesterase Agents, in Goodman &
Gilman’s the Pharmacological Basis of Therapeutics (Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Richards, A. N., and Ruddon, R. W.,
Eds.) pp 161−176, McGraw-Hill, New York.
(8) Elhanany, E., Ordentlich, A., Dgany, O., Kaplan, D., Segall, Y.,
Barak, R., Velan, B., and Shafferman, A. (2001) Resolving pathways of
interaction of covalent inhibitors with the active site of acetylcholi-
nesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl
adducts. Chem. Res. Toxicol. 14, 912−918.
(9) Jennings, L. L., Malecki, M., Komives, E. A., and Taylor, P.
(2003) Direct analysis of the kinetic profiles of organophosphate-
acetylcholinesterase adducts by MALDI-TOF mass spectrometry.
Biochemistry 42, 11083−11091.
(10) Thompson, C. M., Prins, J. M., and George, K. M. (2010) Mass
spectrometric analyses of organophosphate insecticide oxon protein
adducts. Environ. Health Perspect. 118, 11−19.
(11) Kenley, R. A., Bedford, C. D., Howd, R. A., and Jackson, S. E.
(1985) Reactivation of ethyl methylphosphonylated eel acetylcholi-
nesterase in vitro by 2PAM, H16, and a series of nonquaternary alpha-
ketothiohydroximates. Biochem. Pharmacol. 34, 3606−3608.
(12) Carletti, E., Li, H., Li, B., Ekstrom, F., Nicolet, Y., Loiodice, M.,
Gillon, E., Froment, M. T., Lockridge, O., Schopfer, L. M., Masson, P.,
and Nachon, F. (2008) Aging of cholinesterases phosphylated by
tabun proceeds through O-dealkylation. J. Am. Chem. Soc. 130, 16011−
16020.
(13) Worek, F., Aurbek, N., Wetherell, J., Pearce, P., Mann, T., and
Thiermann, H. (2008) Inhibition, reactivation and aging kinetics of
highly toxic organophosphorus compounds: Pig versus minipig
acetylcholinesterase. Toxicology 244, 35−41.
(14) Fest, C., and Schmidt, K. J. (1973) The Chemistry of
Organophosphorus Pesticides: Reactivity, Synthesis, Mode of Action,
Toxicology, Springer Verlag, Berlin, Germany.
(29) Cao, T. M., Bingham, S. E., and Sung, M. T. (1983) A novel
route for solid phase synthesis of polynucleotides using phosphite
chemistry. Tetrahedron Lett. 24, 1019−1020.
(30) Froehler, B. C., and Matteucci, M. D. (1983) Substituted 5-
phenyltetrazoles: improved activators of deoxynucleoside phosphor-
amidites in deoxyoligonucleotide synthesis. Tetrahedron Lett. 24,
3171−3174.
́
(31) Helinski, J., Dab̧ kowski, W., and Michalski, J. (1991) N,N-
diisopropyl-O-P-nitrophenyl-P-methylphosphonoamidite: novel di-
functional PIII reagent in oligonucleoside methylphosphonate syn-
thesis containing 4-nitrophenoxy group. Tetrahedron Lett. 32, 4981−
4984.
(32) Jayaraman, K., and McClaugherty, H. (1982) Solid-phase
‘phosphite’ synthesis of oligonucleotides. Tetrahedron Lett. 23, 5377−
5380.
(33) Liu, L., and Pohl, N. L. B. (2011) A fluorous phosphate
protecting group with applications to carbohydrate synthesis. Org. Lett.
13, 1824−1827.
(34) Pon, R. T., Damha, M. J., and Ogilvie, K. K. (1985)
Modification of guanine bases by nucleoside phosphoramidite reagents
during the solid phase synthesis of oligonucleotides. Nucleic Acids Res.
13, 6447−6465.
(35) Beaucage, S. L., and Caruthers, M. H. (1981) Deoxynucleoside
phosphoramiditesA new class of key intermediates for deoxypoly-
nucleotide synthesis. Tetrahedron Lett. 22, 1859−1862.
(36) Dahl, B. H., Nielsen, J., and Dahl, O. (1987) Mechanistic studies
on the phosphoramidite coupling reaction in oligonucleotide synthesis.
I. Evidence for nudeophilic catalysis by tetrazole and rate variations
with the phosphorus substituents. Nucleic Acids Res. 15, 1729−1743.
(37) Matteucci, M. D., and Caruthers, M. H. (1981) Synthesis of
deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103,
3185−3191.
(15) Fukuto, T. R. (1990) Mechanism of action of organo-
phosphorus and carbamate insecticides. Environ. Health Perspect. 87,
245−254.
(16) Gallo, M. A., and Lawryk, N. J. (1991) Organic Phosphorus
Pesticides, Vol. 2, Academic Press, San Diego, CA.
(17) Shih, T. M., Skovira, J. W., O’Donnell, J. C., and McDonough, J.
H. (2010) In vivo reactivation by oximes of inhibited blood, brain and
peripheral tissue cholinesterase activity following exposure to nerve
agents in guinea pigs. Chem.-Biol. Interact. 187, 207−214.
(18) Millard, C. B., Kryger, G., Ordentlich, A., Greenblatt, H. M.,
Harel, M., Raves, M. L., Segall, Y., Barak, D., Shafferman, A., Silman, I.,
and Sussman, J. L. (1999) Crystal structures of aged phosphonylated
acetylcholinesterase: nerve agent reaction products at the atomic level.
Biochemistry 38, 7032−7039.
(19) James, S. L., Ahmed, S. K., Murphy, S., Braden, M. R., Belabassi,
Y., VanBrocklin, H. F., Thompson, C. M., and Gerdes, J. M. (2014) A
novel fluorine-18 beta-fluoroethoxy organophosphate positron emis-
G
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX