H.C. Chang et al. / Polymer 53 (2012) 1651e1658
1657
4.5
10
conformation of polymer chain. Thus, the highest Tg value of 3a
may be attributed to the rigidity of PMDA moiety. In contrast, the
lowest Tg value of 3b may be due to the flexible ether linkage of
OPDA moiety. A similar trend can also be observed in the 4 series.
Fig. 8 shows the TMA curves of the 3 series, and the results are
listed in Table 2. Tgs of PIs 3 measured by TMA range from 279 to
353 ꢀC, and the trend is the same as that observed in DMA
measurement. The thermal stability of PIs 3e4 was evaluated by
TGA. The 5 wt% degradation temperatures range from 461 to 477 ꢀC
in a nitrogen atmosphere and range from 456 to 474 ꢀC in an air
atmosphere, demonstrating moderate-to-high thermal properties.
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10
4a
4b
4c
4d
4e
10
10
10
10
10
10
4. Conclusions
Two phosphinated diamines (1e2), designed to reduce the
intermolecular interaction, were successfully prepared. PIs based
on (1e2) were prepared in NMP/xylene by high-temperature
solution polymerization. PIs with an ortho t-butyl or methoxy
substitution display much higher transparency and lower cutoff
wavelengths than those with ortho-dialkyl substituted PIs [38]. X-
ray single crystal diffractograms of (1e2) show the orientation of
the phosphinate pendant inclines toward the unsubstitued 4-
aminophenyl linkage, which has conformation with much smaller
intramolecular interaction than that of a diethyl substituted
diamine [38]. It is thought that the improved transparency of PIs
3e4 is related with the reduced intramolecular interaction. To the
best of our knowledge, this is the first study discussing the effect of
orientation of a bulky pendant on the transparency of PI films. In
addition to good transparency, PIs 3e4 display flexibility, good
organo-solubility, high-Tg values, and moderate thermal properties.
The combination of these characteristics makes PIs 3e4 attractive
for applications in microelectronic and optical devices.
50
100
150
200
250
300
350
400
450
Temperature oC
Fig. 7. DMA thermograms of PIs 3.
Table 2
Thermal and mechanical properties of PIs 3e4.
Sample Film
E0(GPa)a Tg (ꢀC) Tg (ꢀC) Td5%( oC)d
Char yielde
quality
(DMA)b (TMA)c
N2
air
N2
air
3a
3b
3c
3d
3e
4a
4b
4c
4d
4e
Foldable 4.0
Foldable 3.7
Foldable 3.7
Foldable 4.3
Foldable 3.9
Foldable 4.0
Foldable 2.4
Foldable 3.5
Foldable 4.5
Foldable 2.3
384
312
322
343
328
391
293
310
332
310
353
279
284
318
292
358
262
276
304
281
477
465
456
461
464
467
461
464
469
466
460
458
456
462
457
466
460
456
474
469
52
53
54
49
47
54
56
55
59
48
46
38
37
45
1
39
43
37
47
4
Appendix. Supporting information
a
Measured by DMA; heating rate, 5 ꢀC/min; storage modulus (E0) are recorded at
50 ꢀC.
Supplementary data related to this article can be found online at
b
c
Measured by DMA; the peak temperature of the Tan
Measured by TMA; heating rate, 5 ꢀC/min.
The 5% decomposition temperature.
Residual wt% at 800 ꢀC in nitrogen.
d
curve.
d
e
References
[1] Ding MX. Prog Polym Sci 2007;32:623e68.
[2] Feger C, Khojasteh MM, McGrath JE. Polyimides: chemistry and character-
ization. Amsterdam: Elsevier; 1994.
[3] Cassidy PE. Thermally stable polymers. New York: Dekker; 1980.
[4] Mittal KL. Polyimide: synthesis, characterization, and application, vols. Ⅰ and Ⅱ.
New York: Plemnum; 1984.
6000
[5] Adadie MJ, Sillion B. Polyimides and other high-temperature polymers.
Amsterdam: Elsevier; 1991.
[6] Hasegawa M, Horie K. Prog Polym Sci 2001;26:259e335.
[7] Dupont BS, Bilow N. US Patent 4,592,925, 1986.
[8] Landis AL, Naselow AB. US Patent 4,645,824, 1987.
[9] Higashi K, Noda Y. European Patent 240,249, 1986.
[10] Tamai S, Ohta M, Kawashima S, Oikawa H, Ohkoshi K, Yamaguchi A. European
Patent 234,882, 1987.
3a
3b
3c
3d
5000
3e
4000
[11] Sydlik SA, Chen Z, Swager TM. Macromolecules 2011;44:976e80.
[12] Zhang Q, Li S, Li W, Zhang S. Polymer 2007;48:6246e53.
[13] Hsiao SH, Wang HM, Chen WJ, Lee TM, Leu CM. J Polym Sci Part A Polym Chem
2011;49:3109e20.
[14] Matsuura T, Ando S, Sasaki S, Yamamoto F. Macromolecular 1994;27:
6665e70.
[15] Sawada T, Ando S. Chem Mater 1998;10:3368e78.
[16] Li F, Ge JJ, Honigfort PS, Fang S, Chen JC, Harris FW, et al. Polymer 1999;40:
4987e5002.
[17] Kim KH, Jang S, Harris FW. Macromolecules 2001;34:8925e33.
[18] Yang CP, Su YY. J Polym Sci Part A Polym Chem 2006;44:3140e52.
[19] Yang CP, Su YY, Hsiao SH. J Polym Sci Part A Polym Chem 2006;44:5909e22.
[20] Yang CP, Su YY, Wu KL. J Polym Sci Part A Polym Chem 2004;42:5424e38.
[21] Yang CY, Chen JS, Hsu SL. J Electrochem Soc 2006;153:F120e5.
[22] Hsu SL, Luo GW, Chen HT, Chuang SW. J Polym Sci Part A Polym Chem 2005;
43:6020e7.
3000
2000
1000
0
100
200
300
400
Temperature (oC)
[23] Chung IS, Kim SY. Macromolecules 2000;33:3190e3.
[24] Kim MK, Kim SY. Macromolecules 2002;35:4553e5.
Fig. 8. TMA curves of PIs 3.