Paper
Organic & Biomolecular Chemistry
was 58% using three equivalents of triethylamine (entry 1).
However, with an excess of either the amine (entry 2) or the
acid and triethylamine (entry 3) >80% isolated yield of amide
5a was obtained. The ability to carry out the amidation reac-
tion of a poorly reactive substrate with either an excess of the
acid or the amine provides flexibility in cases where one of the
coupling partners is particularly valuable. Furthermore,
switching the solvent to dibutyl ether (Bu2O), which has
similar properties to CPME but a higher boiling point, enabled
a 74% isolated yield to be obtained using equimolar quantities
of amine 4a and acid 1a at 140 °C. This correlates well with the
prediction of the DoE model that reaction temperature is by
far the most important factor affecting the yield of amide
obtained.
J. D. Hayler, G. R. Humphrey, J. L. Leazer Jr.,
R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman,
A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9,
411–420.
2 (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38,
606–631; (b) C. A. G. N. Montalbetti and V. Falque, Tetra-
hedron, 2005, 61, 10827–10852.
3 (a) R. M. Lanigan and T. D. Sheppard, Eur. J. Org. Chem.,
2013, 7453–7465; (b) H. Lundberg, F. Tinnis, N. Selander
and H. Adolfsson, Chem. Soc. Rev., 2014, 43, 2714–2742;
(c) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011,
40, 3405–3415; (d) R. García-Álvarez, P. Crochet and
V.
Cadierno,
Green
Chem.,
2013,
15,
46–66;
(e) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480,
471–479.
4 (a) N. Gernigon, R. M. Al-Zoubi and D. G. Hall, J. Org.
Chem., 2012, 77, 8386–8400; (b) K. Arnold, B. Davies,
R. L. Giles, C. Grosjean, G. E. Smith and A. Whiting, Adv.
Synth. Catal., 2006, 348, 813–820; (c) K. Ishihara, S. Ohara
and H. Yamamoto, J. Org. Chem., 1996, 61, 4196–4197;
(d) R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem.,
Int. Ed., 2008, 47, 2876–2879; (e) K. Arnold, A. S. Batsanov,
B. Davies and A. Whiting, Green Chem., 2008, 10, 124–134;
(f) T. Maki, K. Ishihara and H. Yamamoto, Tetrahedron,
2007, 63, 8645–8657; (g) R. Yamashita, A. Sakakura and
K. Ishihara, Org. Lett., 2013, 15, 3654–3657; (h) P. Tang,
Org. Synth., 2005, 81, 262–272; (i) K. Arnold, B. Davies,
D. Herault and A. Whiting, Angew. Chem., Int. Ed., 2008, 47,
2673–2676; ( j) S. Fatemi, N. Gernigon and D. G. Hall, Green
Chem., 2015, 17, 4016–4028; (k) T. M. El Dine, W. Erb,
Y. Berhault, J. Rouden and J. Blanchet, J. Org. Chem., 2015,
80, 4532–4544; (l) E. K. W. Tam, Rita, L. Y. Liu and A. Chen,
Eur. J. Org. Chem., 2015, 1100–1107.
5 (a) H. Lundberg, F. Tinnis and H. Adolfsson, Chem. – Eur.
J., 2012, 18, 3822–3826; (b) H. Lundberg and H. Adolfsson,
ACS Catal., 2015, 5, 3271–3277; (c) H. Lundberg, F. Tinnis
and H. Adolfsson, Synlett, 2012, 2201–2204; (d) C. L. Allen,
A. R. Chhatwal and J. M. J. Williams, Chem. Commun.,
2012, 48, 666–668; (e) L. Y. Shteinberg, S. A. Kondratov and
S. M. Shein, Zh. Org. Khim., 1988, 24, 1968–1972.
6 (a) Y. Terada, N. Ieda, K. Komura and Y. Sugi, Synthesis,
2008, 2318–2320; (b) A. Ojeda-Porras, A. Hernández-
Santana and D. Gamba-Sánchez, Green Chem., 2015, 17,
3157–3163; (c) For amidation of esters using a simple
inorganic base, see: N. Caldwell, C. Jamieson, I. Simpson
and A. J. B. Watson, Chem. Commun., 2015, 51, 9495–
9498.
Conclusions
An improved procedure has been developed for direct amida-
tion reactions with B(OCH2CF3)3 using CPME as the solvent.
The method was successfully applied to a wide variety of phar-
maceutically relevant carboxylic acids and amines with only 6
of the 42 substrates failing to undergo the desired amidation
process. More than half of the amides could be isolated via a
simple filtration work-up without the need for chromato-
graphic purification. Furthermore, it was demonstrated that
optimisation of the amidation protocol for one of the lower
yielding substrates enabled the isolated yield of the amide to
be increased from 36% to 84%.
Acknowledgements
We would like to thank Pfizer and the Engineering and Physi-
cal Sciences Research Council (EPSRC) for providing a CASE
award to VK, and the University College London Department
of Chemistry for providing a studentship to RML. We would
also like to acknowledge GlaxoSmithKline for providing the
carboxylic acid and amine sets, the EPSRC national mass
spectrometry facility in Swansea for analytical services, and the
EPSRC Dial-a-Molecule Network for supporting the Design of
Experiments studies.
Notes and references
1 (a) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams,
Org. Biomol. Chem., 2006, 4, 2337–2347; (b) L. Amarnath,
I. Andrews, R. Bandichhor, A. Bhattacharya, P. Dunn,
J. Hayler, W. Hinkley, N. Holub, D. Hughes, L. Humphreys,
B. Kaptein, H. Krishnen, K. Lorenz, S. Mathew,
G. Nagaraju, T. Rammeloo, P. Richardson, L. Wang,
A. Wells and T. White, Org. Process Res. Dev., 2012, 16, 535–
544; (c) K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig,
S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight,
M. A. Nagy, D. A. Perry and M. Stefaniak, Green Chem.,
2008, 10, 31–36; (d) D. J. C. Constable, P. J. Dunn,
7 (a) H. Charville, D. Jackson, G. Hodges and A. Whiting,
Chem. Commun., 2010, 46, 1813–1823; (b) C. Grosjean,
J. Parker, C. Thirsk and A. R. Wright, Org. Process Res. Dev.,
2012, 16, 781–787; (c) L. J. Gooßen, D. M. Ohlmann and
P. P. Lange, Synthesis, 2009, 160–164; (d) H. Charville,
D. A. Jackson, G. Hodges, A. Whiting and M. R. Wilson,
Eur. J. Org. Chem., 2011, 5981–5990; (e) See also ref. 5d.
8 A. Nadin, C. Hattotuwagama and I. Churcher, Angew.
Chem., Int. Ed., 2012, 51, 1114–1122.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015