Journal of the American Chemical Society
Article
Oestreich, M. Angew. Chem., Int. Ed. 2010, 49, 8513−8515. For the
synthesis of allylsilanes through palladium-catalyzed allylic substitu-
tions with disilanes, see: (e) Moser, R.; Nishikata, T.; Lipshutz, B. H.
anti/syn 1.5:98.5). A reason for the biased 1,3-syn-selectivity is not
clear at present.
(19) (a) Wakamatsu, K.; Nonaka, T.; Okuda, Y.; Tuckmantel, W.;
̈
Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1986, 42, 4427−
Org. Lett. 2010, 12, 28−31. (f) Selander, N.; Paasch, J. R.; Szabo,
́
K. J.
4436. (b) Okuda, Y.; Wakamatsu, K.; Tuckmantel, W.; Oshima, K.;
J. Am. Chem. Soc. 2011, 133, 409−411.
̈
Nozaki, H. Tetrahedron Lett. 1985, 26, 4629−4632.
(10) For the synthesis of chiral allylsilanes bearing a quaternary silyl-
substituted carbon center, see: (a) Wang, K. K.; Gu, Y. G.; Liu, C. J.
Am. Chem. Soc. 1990, 112, 4424−4431. (b) Heo, J.-N.; Micalizio, G.
C.; Roush, W. R. Org. Lett. 2003, 5, 1693−1696. (c) Lambert, W. T.;
Roush, W. R. Org. Lett. 2005, 7, 5501−5504. (d) Wipf, P.; Pierce, J. G.
Org. Lett. 2005, 7, 3537−3540. (e) Lowe, J. T.; Panek, J. S. Org. Lett.
2005, 7, 1529−1532. (f) Aggarwal, V. K.; Binanzer, M.; de Ceglie, M.
C.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.; Sonawane, R. P.;
(20) For Fleming−Tamao oxidation, see: (a) Fleming, I.; Henning,
R.; Plaut, H. J. Chem. Soc., Chem. Commun. 1984, 29−31. (b) Jones, G.
R.; Landais, Y. Tetrahedron 1996, 52, 7599−7662.
(21) For theoretical studies on the importance of the participation of
Lewis acids in allylic substitutions with cuprate reagents, see:
(a) Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008,
130, 12862−12863. (b) Yamanaka, M.; Kato, S.; Nakamura, E. J. Am.
Chem. Soc. 2004, 126, 6287−6293. For a review, see: (c) Yoshikai, N.;
Nakamura, E. Chem. Rev. 2012, 112, 2339−2372.
́
Vazquez-Romero, A.; Webster, M. P. Org. Lett. 2011, 13, 1490−1493
and references therein. See also refs 7a and 7b.
(22) For discussions on the participation of Lewis acids in
enantioselective allylic substitutions catalyzed by copper/N-hetero-
cyclic carbene complexes, see: refs 7b and 13e.
(23) For the utility of alkyl-9-BBN reagents in convergent organic
synthesis, see: Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2001, 40, 4544−4568.
(11) For our report on the synthesis of racemic allylsilanes through
the copper-catalyzed coupling between γ-silylated allylic phosphates
and alkylboranes, see: Nagao, K.; Ohmiya, H.; Sawamura, M. Synthesis
2012, 44, 1535−1541.
(12) For the selective conversion of one enantiomer of secondary
alcohols into both enantiomers of tertiary alcohols, see: (a) Stymiest, J.
L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456,
778−782. For the Suzuki−Miyaura-type coupling of chiral α-
(acetylamino)benzylboronic esters, which allows selective conversion
of one enantiomer of substrates to both enantiomers, see: (b) Awano,
T.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2011, 133, 20738−
20741.
(13) For Cu-catalyzed γ-selective allylic substitutions with organo-
boron compounds, see: (a) Ohmiya, H.; Yokobori, U.; Makida, Y.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 2895−2897. (b) Ohmiya,
H.; Yokokawa, N.; Sawamura, M. Org. Lett. 2010, 12, 2438−2440.
(c) Whittaker, A. M.; Rucker, R. P.; Lalic, G. Org. Lett. 2010, 12,
3216−3218. (d) Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T.
Angew. Chem., Int. Ed. 2011, 50, 8656−8659. (e) Jung, B.; Hoveyda, A.
H. J. Am. Chem. Soc. 2012, 134, 1490−1493. For related studies from
our group on transition metal-catalyzed γ-selective and stereospecific
allylic substitutions, see also: (f) Li, D.; Ohmiya, H.; Sawamura, M. J.
Am. Chem. Soc. 2011, 133, 5672−5675. (g) Ohmiya, H.; Makida, Y.;
Tanaka, T.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 17276−17277.
(h) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am.
Chem. Soc. 2010, 132, 879−889. (i) Makida, Y.; Ohmiya, H.;
Sawamura, M. Chem.Asian J. 2011, 6, 410−414. See also refs 8
and 11.
(14) For Cu-catalyzed conjugate additions with alkylboron
compounds (alkyl-9-BBN) to imidazol-2-yl α,β-unsaturated ketones,
see: (a) Ohmiya, H.; Yoshida, M.; Sawamura, M. Org. Lett. 2011, 13,
482−485. (b) Ohmiya, H.; Shido, Y.; Yoshida, M.; Sawamura, M.
Chem. Lett. 2011, 40, 928−930. For Cu-catalyzed carboxylations with
alkylboron compounds (alkyl-9-BBN) to carbon dioxide, see:
(c) Ohmiya, H.; Tanabe, M.; Sawamura, M. Org. Lett. 2011, 13,
1086−1088. (d) Ohishi, T.; Zhang, L.; Nishiura, M.; Hou, Z. Angew.
Chem., Int. Ed. 2011, 50, 8114−8117. For Cu-catalyzed γ-selective
coupling between alkylboron compounds (alkyl-9-BBN) and prop-
argylic phosphates, see: (e) Ohmiya, H.; Yokobori, U.; Makida, Y.;
Sawamura, M. Org. Lett. 2011, 13, 6312−6315. (f) Uehling, M. R.;
Marionni, S. T.; Lalic, G. Org. Lett. 2011, 13, 362−365.
(15) For the direct enantioconvergent transformation of racemic
cyclic allylic ethers through copper-catalyzed borylation, see: Ito, H.;
Kunii, S.; Sawamura, M. Nature Chem. 2010, 2, 972−976.
(16) The use of a cyclic phosphate as a leaving group markedly
improved the efficacy of the 1,3-anti-selectivity.
(17) The reaction of (S)-(E)-3b proceeded with significantly
decreased E-selectivity (E/Z 71:29), consistent with the concept of
allylic 1,3-strain in acyclic stereocontrol. See: Hoffmann, R. W. Chem.
Rev. 1989, 89, 1841−1860.
(18) When the alkene geometry of (S)-(E)-3e was changed to Z
[(S)-(Z)-3e, 98% ee], the reactions proceeded with 1,3-syn-selectivity
to afford (R)-(E)-4ae regardless of which conditions were used
(conditions A, 93% yield, anti/syn 18:82; conditions B, 83% yield,
8987
dx.doi.org/10.1021/ja302520h | J. Am. Chem. Soc. 2012, 134, 8982−8987