4024
D. T. S. Rijkers, F. Diederich / Tetrahedron Letters 52 (2011) 4021–4025
(Utrecht University) is acknowledged for critically reading the man-
uscript and for his suggestions, and enthusiastic support.
References and notes
1. (a) Tung, C.-H. Biopolymers (Peptide Science) 2004, 76, 391; (b) Rao, J.;
Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Biotechnol. 2007, 18, 17; (c) Lee, S.;
Xie, J.; Chen, X. Chem. Rev. 2010, 110, 3087.
2. Dent, A. H.; Aslam, M. Bioconjugation, Protein Coupling Techniques for the
Biomedical Sciences; Macmillan: London, 2000. Chapter 2.
3. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.
4. Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007.
5. Gaertner, H. F.; Rose, K.; Cotton, R.; Timms, D.; Camble, R.; Offord, R. E.
Bioconjugate Chem. 1992, 3, 262.
6. (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057; (b)
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
7. (a) Michinobu, T.; May, J. C.; Lim, J. H.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.;
Gross, M.; Biaggio, I.; Diederich, F. Chem. Commun. 2005, 737; (b) Michinobu, T.;
Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank, B.; Moonen, N. P.; Gross, M.;
Diederich, F. Chem. Eur. J. 2006, 12, 1889; (c) Jarowski, P. D.; Wu, Y.-L.; Boudon,
C.; Gisselbrecht, J.-P.; Gross, M.; Schweizer, W. B.; Diederich, F. Org. Biomol.
Chem. 2009, 7, 1312; (d) Wu, Y.-L.; Jarowski, P. D.; Schweizer, W. B.; Diederich,
F. Chem. Eur. J. 2010, 16, 202.
Figure 2. UV–vis spectra (in CHCl3 at T = 298 K) of 10 (black round dotted line:
8. Kruijtzer, J. A. W.; Hofmeyer, L. J. F.; Heerma, W.; Versluis, C.; Liskamp, R. M. J.
Chem. Eur. J. 1998, 4, 1570.
1
l
M); 13 (solid black line: 1
lM, red line: 2 lM, blue line: 20 lM, green line:
a
a
45
lM).
9. N -(4-Ethynylphenyl)-N -(methyl)-glycyl-valine methyl ester (4): Rf = 0.33
(Et2O);
+51.8 (c = 0.49 in CHCl3); 1H NMR (300 MHz, CDCl3, 25 °C):
d = 0.73 (d, 3J(H,H) = 6.9 Hz, 3H; CH3 Val), 0.86 (d, 3J(H,H) = 6.9 Hz, 3H; c0CH3
½ ꢃ
a 2D0
c
Tetracyanobutadienes 10–12 were obtained as purple-black solids
with metallic luster, and were stable in air at ambient
temperatures.
The addition of TCNE to a solution of dialkynes 5 and 7 (in
CH2Cl2, and CHCl3, respectively) resulted immediately in a color
change of the reaction mixture, and compounds 1318 and 14 were
isolated as dark-red colored solids in quantitative and 75% yields,
respectively. Since dialkyne 9 was not soluble in solvents that were
inert toward TCNE its corresponding TCBD could not be obtained.
The UV–vis spectra of compounds 10 and 13 are shown in Fig-
Val), 2.12 (m, 1H; bCH Val), 2.99 (s, 1H; HC„), 3.08 (s, 3H; NCH3), 3.69 (s, 3H;
OCH3), 3.83 (d, 3J(H,H) = 18 Hz, 1H; CH2 Gly), 3.96 (d, 3J(H,H) = 38.4 Hz, 1H; CH2
a
Gly), 4.55 (dd, 3J(H,H) = 4.8 Hz, 3J(H,H) = 9 Hz, 1H;
aCH Val), 6.66 (d,
3J(H,H) = 9 Hz, 2H; arom H), 6.75 (d, 3J(H,H) = 9 Hz, 1H; amide NH), 7.39 (d,
3J(H,H) = 9 Hz, 2H; arom H); 13C NMR (75.5 MHz, CDCl3, 25 °C): d = 171.8,
169.5, 148.5, 133.3, 112.6, 111.4, 84.0, 75.6, 58.1, 56.7, 52.2, 39.7, 31.1, 19.1,
17.6; UV–vis (CHCl3): kmax (e
) = 282 nm (36,750 molꢀ1 dm3 cmꢀ1); ESMS calcd
for C17H22N2O3: 302.16, found: m/z 303.25 [M+H]+, 321.30 [(M+H2O)+H]+.
10. Hay, A. S. J. Org. Chem. 1962, 27, 3320.
11. For a review on acetylenic (homo)coupling, see: (a) Siemsen, P.; Livingston, R.
C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632; We used the following
approach: (b) Batsanov, A. S.; Collings, J. C.; Fairlamb, I. J. S.; Holland, J. P.;
Howard, J. A. K.; Lin, Z.; Marder, T. B.; Parsons, A. C.; Ward, R. M.; Zhu, J. J. Org.
Chem. 2005, 70, 703.
ure 2. An absorption maximum at k = 321 nm (
e
21,000 molꢀ1
12. Dialkyne (5): Rf = 0.40 (EtOAc/Et2O 1:1); mp 131–132 °C; ½a D20
ꢃ
+110.5 (c = 0.41
dm3 cmꢀ1) was observed for tetracyanobutadiene 10, while tetracy-
anobutadiene 13 showed a maximum at k = 492 nm with a high mo-
in CHCl3); 1H NMR (300 MHz, CDCl3, 25 °C): d = 0.73 (d, 3J(H,H) = 6.9 Hz, 6H;
c
CH3 Val), 0.86 (d, 3J(H,H) = 6.9 Hz, 6H; c0CH3 Val), 2.14 (m, 2H; bCH Val), 3.09
(s, 6H; NCH3), 3.69 (s, 6H; OCH3), 3.85 (d, 3J(H,H) = 18 Hz, 1H; CH2 Gly), 3.98 (d,
lar extinction coefficient of 65,000 molꢀ1 dm3 cmꢀ1 19
.
The molar
extinction coefficient was found to be highly concentration depen-
dent, as shown for compound 13. At c = 1 M, a molar extinction
coefficient of 65,000 molꢀ1 dm3 cmꢀ1 at kmax = 492 nm was found,
while at c = 45 M,
had dropped to 30,000 molꢀ1 dm3 cmꢀ1. This
3J(H,H) = 39 Hz, 1H; CH2 Gly), 4.55 (dd, 3J(H,H) = 4.8 Hz, 3J(H,H) = 9 Hz, 2H;
aCH
Val), 6.66 (d, 3J(H,H) = 9 Hz, 4H; arom H), 6.71 (d (overlapping signal), 2H;
amide NH), 7.40 (d, 3J(H,H) = 9 Hz, 4H; arom H); 13C NMR (75.5 MHz, CDCl3,
25 °C): d = 171.8, 169.3, 148.9, 133.7, 112.6, 111.1, 81.7, 73.0, 58.0, 56.7, 52.2,
l
39.7, 31.1, 19.1, 17.6; UV–vis (CHCl3): kmax (e) = 368 (59,000), 343 (77,000),
l
e
322 nm (73,500 molꢀ1 dm3 cmꢀ1); ESMS calcd for C34H42N4O6: 602.31, found:
m/z 603.50 [M+H]+.
concentration dependency was a strong indication of (peptide)
aggregation, and this effect was more pronounced by elongation of
the peptide sequence, from ꢂGly-Val-OMe, to ꢂGly-Val-Ile-OMe
and ꢂGly-Val-Ile-Ala-OMe (data not shown).
13. Peptide synthesis was performed in solution according to: Ray, S.; Das, A. K.;
Drew, M. G. B.; Banerjee, A. Chem. Commun. 2006, 4230.
14. Dialkyne (9): Mp 266 °C (dec); 1H NMR (300 MHz, DMSO-d6, 25 °C): d = 0.77–
0.84 (m, 24H;
c
CH3 Val/c0CH3 Val (4 ꢄ 3H)/
cCH3 Ile (2 ꢄ 3H)/dCH3 Ile
(2 ꢄ 3H)), 1.05 (m, 2H; c0CH2 Ile), 1.24 (d, 3J(H,H) = 7.2 Hz, 6H; bCH3 Ala),
In conclusion, a new class of peptide-based chromophores has
been described featuring the [2+2] cycloaddition–cycloreversion
reaction between an electron-rich alkyne and tetracyanoethylene,
resulting in intensely-colored peptide constructs with high molar
extinction coefficients. This chemistry can be considered as a mod-
el study for bioorthogonal modification of peptides with imaging
chromophores possessing tunable optical properties. Since the
cyanobutadiene scaffold has been functionalized with peptides
that have a strong b-sheet propensity, these newly designed pep-
tide chromophores may lead to the development of imaging probes
for amyloid deposits.
1.40 (m, 2H; c0CH2 Ile), 1.68 (m, 2H; bCH Ile), 1.94 (m, 2H; bCH Val), 3.01 (s, 6H;
NCH3), 3.58 (s, 6H; OCH3), 4.06 (m, 4H; CH2 Gly), 4.22 (m, 6H;
aCH Val
(2 ꢄ 1H)/
a
CH Ile (2 ꢄ 1H)/
a
CH Ala (2 ꢄ 1H)), 6.60 (d, 3J(H,H) = 9 Hz, 4H; arom
H), 7.28 (d, 3J(H,H) = 9 Hz, 4H; arom H), 7.84 (d, 3J(H,H) = 8.7 Hz, 2H; amide
NH), 7.98 (d, 3J(H,H) = 9 Hz, 2H; amide NH), 8.38 (d, 3J(H,H) = 6.6 Hz, 2H; amide
NH); 13C NMR (125 MHz, DMSO-d6, 25 °C): d = 133.9, 112.5, 57.7, 56.6, 55.0,
51.7, 47.8, 39.6, 37.0, 30.7, 24.3, 19.3, 18.1, 16.8, 15.1, 11.1 (16 lines out of 24
based on an HSQC); ESMS calcd for C52H74N8O10: 970.55, found: m/z 971.80
[M+H]+, 993.55 [M+Na]+.
15. This reaction is another example of ‘click chemistry’, see: Kolb, H. C.; Finn, M.
G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
a
a
16. N -[4-(1,1,4,4-Tetracyanobuta-1,3-dien-2-yl)phenyl]-N -(methyl)-glycyl-valine
methyl ester (10):20 Rf = 0.38 (EtOAc/Et2O 1:1 v/v), Rf = 0.42 (CHCl3/MeOH 95:5
v/v), Rf = 0.58 (CH2Cl2/EtOAc 1:1 v/v); mp 140–141 °C; 1H NMR (300 MHz,
CDCl3, 25 °C): d = 0.76 (d, 3J(H,H) = 6.9 Hz, 3H;
cCH3 Val), 0.87 (d,
Acknowledgements
3J(H,H) = 6.9 Hz, 3H; c0CH3 Val), 2.15 (m, 1H; bCH Val), 3.24 (s, 3H; NCH3),
3.71 (s, 3H; OCH3), 4.03 (d, 3J(H,H) = 18 Hz, 1H; CH2 Gly), 4.14 (d,
3J(H,H) = 34.2 Hz, 1H; CH2 Gly), 4.55 (dd, 3J(H,H) = 4.8 Hz, 3J(H,H) = 8.7 Hz,
D.T.S.R. gratefullyacknowledgestheETHZürichResearchCouncil
for financial support, and Utrecht University for facilitating a sabbat-
ical leave at the ETHZ. Dr. Milan Kivala (Friedrich-Alexander-Univer-
sität, Erlangen-Nürnberg, Germany) is acknowledged for his interest
and contributions to the scientific discussions with respect to this
work. Dr. Johan Kemmink (Utrecht University) is thanked for
measuring the 13C HSQC of dialkyne 9. Professor Rob M. J. Liskamp
1H;
a
CH Val), 6.40 (d, 3J(H,H) = 8.7 Hz, 1H; amide NH), 6.82 (d, 3J(H,H) = 9 Hz,
2H; arom H), 7.48 (d, 3J(H,H) = 9 Hz, 2H; arom H), 8.03 (s, 1H; HC@C(CN)2); 13
C
NMR (75.5 MHz, CDCl3, 25 °C): d = 171.7, 167.8, 159.8, 155.2, 153.2, 131.8,
119.4, 112.8, 112.7, 111.5, 108.7, 97.6, 82.9, 57.0, 56.8, 52.4, 39.9, 31.1, 19.1,
17.7; UV–vis (CHCl3): kmax
(e) = 553 (6800), 463 (6000), 321 nm
(21,000 molꢀ1 dm3 cmꢀ1); ESMS calcd for C23H22N6O3: 430.18, found: m/z
463.55 [(M+CH3OH)+H]+, 485.55 [(M+CH3OH)+Na]+.
17. The residual solvent peak CHCl3 (7.26 ppm) at T = 298 K was used as reference.