RSC Advances
Paper
C. Subrananiam, W. W. Webb, X. L. Wu and C. Xu, Science,
1998, 281, 1653.
Table 3 Approximate formal potentials (E0) and number of electrons trans-
ferred during the oxidations
7 J. J. Zyss, Chem. Phys., 1993, 98, 6583.
E0/Va,b
8 B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J.
C. Bhatt, R. Kannan, L. X. Yuan, G. S. He and P. N. Prasad,
Chem. Mater., 1998, 10, 1863.
9 H. J. Lee, J. Sohn, J. Hwang, S. Y. Park, H. Choi and M. Cha,
Chem. Mater., 2004, 16, 456.
10 Y. X. Yan, X. T. Tao, Y. H. Sun, G. B. Xu, C. K. Wang, T.
X. Yang, Y. Z. Wu, Y. Ren and M. H. Jiang, Mater. Chem.
Phys., 2005, 90, 139.
Process 1
Process 2
Process 3
+0.695 (1)
Process 4
T1
B1
T3
B3
T4
B4
0.535 (1)
0.340 (1)
+0.510 (1)
+0.375 (1)
+0.375 (1)
+0.230 (3)
+0.535 (2)
+0.530 (1)
11 P. Wei, X. D. Bi, Z. Wu and Z. Xu, Org. Lett., 2005, 7, 3199.
12 Z. Fang, M. Samoc, R. D. Webster, A. Samoc and Y.-H. Lai,
Tetrahedron Lett., 2012, 53, 4885.
a
Peak potential vs. Fc/Fc+ to the nearest 5 mV measured by square
wave voltammetry and assuming electrochemical reversibility.
b
Number of electrons associated with each process are given in
parentheses.
13 S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz
and P. N. Prasad, J. Phys. Chem. B, 1999, 103, 10741.
14 G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B.
A. Reinhardt, L.-S. Tan and R. Kannan, J. Phys. Chem. A,
2000, 104, 4805.
electron oxidation followed by a one-electron oxidation,
represented in Fig. 3. A summary of the formal oxidation
potentials measured by SWV is given in Table 3. Compared
with the T series, the B series shows 140–200 mV less for the
first oxidation attributed to the stabilization of radical cations,
as shown in B1 and T1.
`
15 L. Porres, O. Mongin, C. Katan, M. Charlot, T. Pons,
J. Mertz and M. Blanchard-Desce, Org. Lett., 2004, 6, 47.
16 O. Varnavski, X. Yan, O. Mongin, M. Blanchard-Desce and
T. Goodson III, J. Phys. Chem. C, 2007, 111, 149.
17 A. N. Sobolev, V. K. Belsky, I. P. Romm, N. Y. Chernikova
and E. N. Guryanova, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 1985, 41, 967.
18 Z. Fang, V. Chellappan, R. D. Webster, L. Ke, T. Zhang,
B. Liu and Y.-H. Lai, J. Mater. Chem., 2012, 22, 15397.
19 Z. Jiang, T. Ye, C. Yang, D. Yang, M. Zhu, C. Zhong, J. Qin
and D. Ma, Chem. Mater., 2011, 23, 771.
20 Z. Fang, X. Zhang, Y.-H. Lai and B. Liu, Chem. Commun.,
2009, 920.
21 Z. Fang, T.-T. Teo, L. Cai, Y.-H. Lai, A. Samoc and
M. Samoc, Org. Lett., 2009, 11, 1–4.
22 H. Firouzabadi, N. Iranpoor, K. Amani and S. D. Ross, J.
Mol. Catal. A: Chem., 2003, 195, 289.
23 M. Finkelstein and R. C. Petersen, J. Am. Chem. Soc., 1958,
80, 4327.
24 H. Eguchi, H. Kawaguchi, S. Yoshinaga, A. Nishida,
T. Nishiguchi and S. Fujisaki, Bull. Chem. Soc. Jpn., 1994,
67, 1918.
Conclusions
In summary, we synthesize both triphenylamine and bridged
triphenylamine based triads. Their one-photon and two-
photon photophysical properties are discussed. Due to the
enhanced planarity of the triphenylamine moiety, extended
conjugation has been found in both B3 and B4, which provide
larger two-photon absorption cross-sections than T3 and T4.
Together with the studies of oxidation under cyclic voltam-
metry conditions, an over 150 mV lower oxidation potential in
B series affirms the stabilization of radical cations by the
planar structures. This shows potential in electroluminescent
applications as well as the considerable TPA performance for
bridged triphenylamine.
25 T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani,
C. Ikeda, A. Osuka and D. Kim, J. Am. Chem. Soc., 2006, 128,
1700.
26 Z. S. Yoon, J. H. Kwon, M.-C. Yoon, M. K. Koh, S. B. Noh, J.
L. Sessler, J. T. Lee, D. Seidel, A. Aguilar, S. Shimizu,
M. Suzuki, A. Osuka and D. Kim, J. Am. Chem. Soc., 2006,
128, 14128.
Notes and references
1 J. E. Ehrlich, X. L. Wu, L. Y. S. Lee, Z. Y. Hu, H. Rockel, S.
R. Marder and J. W. Perry, Opt. Lett., 1997, 22, 1843.
2 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M.
P. Bruchez, F. W. Wise and W. W. Webb, Science, 2003, 300,
1434.
27 X. Zhou, A.-M. Ren, J.-K. Feng, X.-J. Liu, G.-B. Yang and W.-
J. J. Tian, Opt. Mater., 2004, 27, 315.
28 G. Xu, X. Zhao, D. Hu, Z. Shao, H. Liu and Y. Tian, Opt.
Commun., 2006, 260, 292.
29 C. Xu, R. M. Williams, W. Zipfel and W. W. Webb,
Bioimaging, 1996, 4, 198.
3 C. Xu, W. Zipfel, J. B. Shear, R. M. Williams and W.
W. Webb, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10763.
4 S. Kim, H. E. Pudavar, A. Bonoiu and P. N. Prasad, Adv.
Mater., 2007, 19, 3791.
30 Y. P. Meshalkin and S. S. Chunosova, Quantum Electron.,
2005, 35, 527.
31 J. P. Hermann and J. Ducuing, Opt. Commun., 1972, 6, 101.
32 J. Rault-Berthelot, M. Cariou and J. J. Tahri-Hassani, J.
Electroanal. Chem., 1996, 402, 203.
5 H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky
and G. C. Bazan, J. Am. Chem. Soc., 2005, 127, 14721.
6 M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A.
A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder,
D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi,
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 17914–17917 | 17917