Job/Unit: O43169
/KAP1
Date: 22-12-14 11:20:16
Pages: 9
Chalcogen-Mediated Yne–Carbamate Cyclisation
arenko, A. K. Kiemer, C. Jacob, Tetrahedron 2012, 68, 10577–
141.6 (CH), 141.4 (C), 140.1 (CH), 140.0 (CH), 139.4 (CH), 139.2
(CH), 138.7 (CH), 137.3 (CH), 135.1 (CH), 130.1 (C), 63.6
(CH) ppm. HRMS (ESI): m/z (%) = 375.9906/376.9911 (100/24.4)
[M + H]+; calcd. for C22H18NO3S: 376.1002/377.1036.
10585; e) J. Vargas, S. Narayanaperumal, K. Gul, B. B. Rav-
anello, L. Dornelles, L. C. Soares, C. F. S. Alves, T. Schneider,
R. D. A. Vaucher, R. C. V. Santos, O. E. D. Rodrigues, Tetrahe-
dron 2012, 68, 10444–10448; f) L. Zhao, J. Li, Y. Li, J. Liu, T.
Wirth, Z. Li, Bioorg. Med. Chem. 2012, 20, 2558–2563; g) U.
Luesakul, T. Palaga, K. Krusong, N. Ngamrojanavanich, T.
Vilaivan, S. Puthong, N. Muangsin, Bioorg. Med. Chem. Lett.
2014, 24, 2845–2850.
Computational Methods: DFT calculations were carried out by
using the B3LYP[29] exchange-correlation functionals together with
the standard 6-311G* basis set.[30] Optimisations were carried out
by using the Berny analytical gradient optimisation method.[31] Sta-
tionary points were characterised by frequency calculations to ver-
ify that the TSs have one and only one imaginary frequency. Intrin-
sic reaction coordinate (IRC)[32] paths were traced to check the en-
ergy profiles connecting each TS to the two associated minima of
the proposed mechanism by using the second-order González–
Schlegel integration method.[33] The solvent effects of acetonitrile
were taken into account through full optimisations by using the
polarisable continuum model (PCM) as developed by Tomasi and
Persico[34] within the framework of self-consistent reaction field
(SCRF) theory.[35] All calculations were carried out by using the
Gaussian 09 suite of programs.[36]
[7]
a) N. Mukherjee, T. Chatterjee, B. C. Ranu, J. Org. Chem. 2013,
78, 11110–11114; b) C. D. Prasad, S. J. Balkrishna, A. Kumar,
B. S. Bhakuni, K. Shrimali, S. Biswas, S. Kumar, J. Org. Chem.
2013, 78, 1434–1443; c) T. Chatterjee, B. C. Ranu, J. Org.
Chem. 2013, 78, 7145–7153; d) S. S. Badsara, Y.-C. Liu, P.-A.
Hsieh, J.-W. Zeng, S.-Y. Lu, Y.-W. Liu, C.-F. Lee, Chem. Com-
mun. 2014, 50, 11374–11377; e) J.-T. Yu, H. Guo, Y. Yi, H. Fei,
Y. Jiang, Adv. Synth. Catal. 2014, 356, 749–752; f) D. Kundu,
S. Ahammed, B. C. Ranu, Org. Lett. 2014, 16, 1814–1817; g)
X. Sanz, C. M. Vogels, A. Decken, C. Bo, S. A. Westcott, E.
Fernández, Chem. Commun. 2014, 50, 8420–8423.
a) H. A. Stefani, D. M. Leal, F. Manarin, Tetrahedron Lett.
2012, 53, 6495–6499; b) C. C. Silveira, S. R. Mendes, L. Wolf,
G. M. Martins, L. von Mühlen, Tetrahedron 2012, 68, 10464–
10469; c) L. Savegnago, A. I. Vieira, N. Seus, B. S. Goldani,
M. R. Castro, E. J. Lenardao, D. Alves, Tetrahedron Lett. 2013,
54, 40–44.
a) Y. Chen, C.-H. Cho, F. Shi, R. C. Larock, J. Org. Chem.
2009, 74, 6802–6811; b) H. Du, R. Tang, C. Deng, Y. Liu, J.
Li, X. Zhang, Adv. Synth. Catal. 2011, 353, 2739–2748; c) L.
Tao, W. Liu, Y. Zhou, A. Li, J. Chem. Res. 2012, 36, 644–646.
a) D. W. Knight, H. C. Rost, C. M. Sharland, J. Singkhonrat,
Tetrahedron Lett. 2007, 48, 7906–7910; b) M. Yoshida, S. Eas-
min, M. Al-Amin, Y. Hirai, K. Shishido, Tetrahedron 2011, 67,
3194–3200; c) R. Spina, E. Colacino, B. Gabriele, G. Salerno,
J. Martinez, F. Lamaty, Synlett 2012, 23, 1481–1484.
a) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, L. Moro, Syn-
lett 1999, 1432–1434; b) F. Manarin, J. A. Roehrs, R. Mozza-
quatro Gay, R. Brandao, P. H. Menezes, C. W. Nogueira, G.
Zeni, J. Org. Chem. 2009, 74, 2153–2162; c) R. M. Gay, F.
Manarin, C. C. Schneider, D. A. Barancelli, M. D. Costa, G.
Zeni, J. Org. Chem. 2010, 75, 5701–5706; d) M. Xu, X. Zhang,
P. Zhong, Tetrahedron Lett. 2011, 52, 6800–6804; e) T. Okitsu,
K. Nakata, K. Nishigaki, N. Michioka, M. Karatani, A. Wada,
J. Org. Chem. 2014, 79, 5914–5920.
a) C.-H. Cho, B. Neuenswander, R. C. Larock, J. Comb. Chem.
2010, 12, 278–285; b) R. Sanz, V. Guilarte, E. Hernando, A. M.
Sanjuán, J. Org. Chem. 2010, 75, 7443–7446.
T. Kesharwani, S. A. Worlikar, R. C. Larock, J. Org. Chem.
2006, 71, 2307–2312.
a) B. L. Flynn, G. P. Flynn, E. Hamel, M. K. Jung, Bioorg.
Med. Chem. Lett. 2001, 11, 2341–2343; b) B. Gabriele, R. Man-
cuso, G. Salerno, R. C. Larock, J. Org. Chem. 2012, 77, 7640–
7645.
a) P. Kaur, P. Singh, S. Kumar, Tetrahedron 2005, 61, 8231–
8240; b) S. P. Bew, G. M. M. El-Taeb, S. Jones, D. W. Knight,
W.-F. Tan, Eur. J. Org. Chem. 2007, 5759–5770; c) B. Crone,
S. F. Kirsch, J. Org. Chem. 2007, 72, 5435–5438; d) C.-H. Cho,
R. C. Larock, Tetrahedron Lett. 2010, 51, 3417–3421; e) Z.
Chen, G. Huang, H. Jiang, H. Huang, X. Pan, J. Org. Chem.
2011, 76, 1134–1139.
[8]
Acknowledgments
Financial support from the Ministerio de Economía y Competitivi-
dad (MINECO), Gobierno de España, from the European Union
(EU) (Fondos Europeos para el Desarrollo Regional (FEDER),
grant numbers CTQ2009-13083 and CTQ2013-47494-P) and from
the Generalitat Valenciana (grant numbers ACOMP2012-212 and
ISIC2012/001 and a pre-doctoral grant to A. M.) is gratefully ac-
knowledged.
[9]
[10]
[1] a) I. Vauthey, F. Valot, C. Gozzi, F. Fache, M. Lemaine, Tetra-
hedron Lett. 2000, 41, 6347–6350; b) A. J. DeBono, J. H. Xie,
S. Ventura, C. W. Pouton, B. Capuano, P. J. Scammells, Chem-
MedChem 2012, 7, 2122–2133; c) A. Singh, H.-J. Ha, J. Park,
J. H. Kim, W. K. Lee, Bioorg. Med. Chem. 2011, 19, 6174–6181;
d) A. L. Wolfe, K. K. Duncan, N. K. Parelkar, S. J. Weir, G. A.
Vielhauer, D. L. Boger, J. Med. Chem. 2012, 55, 5878–5886; e)
R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5845–5859.
[2] a) W. Tai-The, J. Huang, N. Arrington, G. M. Dill, J. Agric.
Food Chem. 1987, 35, 817–823; b) M. Liu, Y. Hashi, Y. Song,
J. Lin, J. Chromatogr. A 2005, 1097, 183–187.
[3] S. Jeschke, A.-C. Gentschev, H.-D. Wiemhöfer, Chem. Com-
mun. 2013, 49, 1190–1192.
[4] a) M. Pattarozzi, C. Zonta, Q. B. Broxterman, B. Kaptein, R.
De Zorzi, L. Randaccio, P. Scrimin, G. Licini, Org. Lett. 2007,
9, 2365–2368; b) Y. Takeda, S. Okumura, S. Tone, I. Sasaki, S.
Minakata, Org. Lett. 2012, 14, 4874–4877; c) C. R. McElroy,
F. Aricò, F. Benetollo, P. Tundo, Pure Appl. Chem. 2012, 84,
707–719.
[5] a) T. Wirth, Tetrahedron 1999, 55, 1–28; b) T. Wirth, Angew.
Chem. Int. Ed. 2000, 39, 3740–3749; Angew. Chem. 2000, 112,
3890; c) A. L. Braga, D. S. Lüdtke, F. Vargas, R. C. Braga, Syn-
lett 2006, 1453–1466; d) A. L. Braga, D. S. Lüdtke, F. Vargas,
Curr. Org. Chem. 2006, 10, 1921–1938; e) D. M. Freudendahl,
S. A. Shahzad, T. Wirth, Eur. J. Org. Chem. 2009, 1649–1664;
f) G. Zeni, E. J. Lenardao (Eds.), Progress, in: organoselenium
and organotellurium chemistry, Tetrahedron Symposium-in-print
Number 161; Tetrahedron 2012, 68, 10391–10620.
[6] a) G. I. Giles, F. H. Fry, K. M. Tasker, A. L. Holme, C. Peers,
K. N. Green, L. O. Klotz, H. Sies, O. Jacob, Org. Biomol.
Chem. 2003, 1, 4317–4322; b) V. Jamier, L. A. Ba, C. Jacob,
Chem. Eur. J. 2010, 16, 10920–10928; c) L. Piovan, L. Wu, Z.-
Y. Zhang, L. H. Andrade, Org. Biomol. Chem. 2011, 9, 1347–
1351; d) M. Doering, B. Diesel, M. C. H. Gruhlke, U. M. Vis-
wanathan, D. Mániková, M. Chovanec, T. Burkholz, A. J. Slus-
[11]
[12]
[13]
[14]
[15]
[16]
a) S. A. Worlikar, T. Kesharwani, T. Yao, R. C. Larock, J. Org.
Chem. 2007, 72, 1347–1353; b) B. Godoi, A. Sperança, D. F.
Back, R. Brandão, C. W. Nogueira, G. Zeni, J. Org. Chem.
2009, 74, 3469–3477.
A. Monleón, G. Blay, L. R. Domingo, M. C. Muñoz, J. R. Pe-
dro, Chem. Eur. J. 2013, 19, 14852–14860.
M. Bian, W. Yao, H. Ding, C. Ma, J. Org. Chem. 2010, 75,
269–272.
R. Buksnaitiene, A. Urbanaite, I. Cikotiene, J. Org. Chem.
2014, 79, 6532–6553.
[17]
[18]
[19]
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7