JASSEM et al.
1602
(C=Carom). 13C NMR spectrum, δC, ppm: 0.95 d (3H,
CH3, J = 6.8 Hz), 1.05 d (3H, CH3, J = 6.9 Hz), 1.78–
1.55 m (10H, CH2) 1.85 d (3H, CH3, J = 3.6 Hz), 2.20–
2.16 m (1H, CH) 3.45 d (1H, CH, J = 3.7 Hz), 4.42 d.d
(1H, CH, J = 14.2, 7.1 Hz), 7.23 t (1H, Harom, J =
7.3 Hz), 7.31 t (2H, Harom, J = 7.4 Hz), 7.45 d (2H,
10. Samanta, S., Liu, J., Dodda, R., and Zhao, C.-G., Org.
Lett., 2005, vol. 7, p. 5321.
11. Tang, Z., Jiang, F., Yu, L.-T., Cui, X., Gong, L.-Z.,
Mi, A.-Q., Jiang, Y.-Z., and Wu, Y.-D., J. Am. Chem.
Soc., 2003, vol. 125, p. 5262.
H
arom, J = 8.4 Hz). 13C NMR spectrum, δC, ppm: 16.9,
12. He, L., Jiang, J., Tang, Z., Cui, X., Mi, A.-Q.,
Jiang, Y.-Z., and Gong, L.-Z., Tetrahedron: Asymmetry,
2007, vol. 18, p. 265.
13. Córdova, A., Tetrahedron. Lett., 2004, vol. 45, p. 3949.
14. Tang, Z., Yang, Z.-H., Chen, X.-H., Cun, L.-F.,
Mi, A.-Q., Jiang, Y.-Z., and Gong, L.-Z., J. Am. Chem.
Soc., 2005, vol.127, p. 9285.
19.2, 19.7, 23.1 (2C), 24.9, 37.7, 52.4 (2C, CH2), 62.5
(CH), 78.6, 126.8, 128.2, 142.7 (CH), 178.4. Mass
spectrum: m/z 301.2274 [M + H]+. C19H28N2O. Cal-
culated: M + H 301.2276.
FUNDING
This work was financially supported by the Ministry of
Higher Education and Scientific Research (Iraq).
15. Kucherenko, A.S., Siyutkin, D.E., Dashkin, R.R., and
Zlotin, S.G., Russ. Chem. Bull., Int. Ed., 2013, vol. 62,
p. 1010.
16. Sebahar, P.R. and Williams, R.M., J. Am. Chem. Soc.,
2000, vol. 122, p. 5666.
ACKNOWLEDGMENTS
The authors gratefully acknowledge Sheffield University
1
(UK) for recording IR, H and 13C NMR, and high-resolu-
tion mass spectra.
CONFLICT OF INTERESTS
The authors declare no conflict of interests.
REFERENCES
17. DeMong, D., Dai, X., Hwa J., Miller, M., Lin, S.-I.,
Kang, L., Stamford, A., Greenlee, W., Yu, W.,
Wong, M., Lavey, B., Kozlowski, J., Zhou, G.,
Yang, D.-Y., Patel, B., Soriano, A., Zhai, Y.,
Sondey, C., Zhang, H., Lachowicz, J., Grotz, D.,
Cox, K., Morrison, R., Andreani, T., Cao, Y., Liang, M.,
Meng, T., McNamara, P., Wong, J., Bradley, P.,
Feng, K.-I., Belani, J., Chen, P., Dai, P., Gauuan, J.,
Lin, P., and Zhao, H., J. Med. Chem., 2014, vol. 57,
p. 2601.
1. DeGrado, W.F., Chem. Rev., 2001, vol. 101, p. 3025.
2. Martynowski, D., Eyobo, Y., Li, T., Yang, K., Liu, A.,
and Zhang, H., Biochemistry, 2006, vol. 45, p. 10412.
3. Dean, S.M., Greenberg, W.A., and Wong, C.H., Adv.
Synth. Catal., 2007, vol. 349, p. 1308.
4. Wagner, C., Kotthaus, A.F., and Kirsch, S.F., Chem.
Commun., 2017, vol. 53, p. 4513.
18. Ghosh, A.K. and Osswald, H.L., Chem. Soc. Rev., 2014,
vol. 43, p. 6765.
https://doi.org/10.1039/C3CS60460H
19. Jiang, Y., Chen, X., Hu, X.Y., Shu, C., Zhang, Y.H.,
Zheng, Y.S., Lian, C.X., Yuan, W.C., and Zhang, X.M.,
Adv. Synth. Catal., 2013, vol. 355, p. 1931.
20. Barrulas, P.C., Genoni, A., Benaglia, M., and
Burke, A.J., Eur. J. Org. Chem., 2014, p. 7339.
21. Jiang, Y., Chen, X., Zheng, Y., Xue, Z., Shu, C.,
Yuan, W., and Zhang, X., Angew. Chem., Int. Ed., 2011,
vol. 50, p. 7304.
https://doi.org/10.1039/C7CC01561E
5. de la Torre, A.F., Rivera, D.G., Ferreira M.A.B.,
Corrêa, A.G., and Paixão, M.W., J. Org. Chem., 2013,
vol. 78, p. 10221.
6. Duschmalé, J., Kohrt, S., and Wennemers, H., Chem.
Commun., 2014, vol. 50, p. 8109.
https://doi.org/10.1039/C4CC01759E
7. Duthaler, R.O., Tetrahedron, 1994, vol. 50, p. 1539.
8. Zlotin, S.G., Kucherenko, A.S., and Beletskaya, I.P.,
Russ. Chem. Rev., 2009, vol. 78, p. 737.
9. Krattiger, P., Kovasy, R., Revell, J.D., Ivan, S., and
Wennemers, H., Org. Lett., 2005, vol. 7, p. 1101.
22. Beeson, T.D., Mastracchio, A., Hong, J.-B., Ashton, K.,
and MacMillan, D.W.C., Scince, 2007, vol. 316, p. 582.
23. Brenna, D., Porta, R., Massolo, E., Raimondi, L., and
Benaglia, M., Chem. Cat. Chem., 2017, vol. 9, p. 941.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 55 No. 10 2019