10.1002/ejoc.201900107
European Journal of Organic Chemistry
FULL PAPER
enantioenriched starting material was recovered as colorless oil (40% yield,
97% ee). The NMR spectra are in agreement with those of rac-1-
phenylpent-4-enylamine.[12d]
[5]
[6]
Reviews on alkali and alkaline-earth metal-catalyzed hydroaminations:
a) J. Seayad, A. Tillack, C. G. Hartung, M. Beller, Adv. Synth. Catal. 2002,
344, 795–813; b) S. Harder, Chem. Rev. 2010, 110, 3852–3876; c) A. G.
M. Barrett, M. R. Crimmin, M. S. Hill, P. A. Procopiou, Proc. R. Soc. A
2010, 466, 927–963; d) M. R. Crimmin, M. S. Hill, Top. Organomet.
Chem. 2013, 45, 191–241.
(1S)-1-Cyclohexylpent-4-en-1-amine ((S)-3d). This compound was
prepared by kinetic resolution using (R)-2c at 25 °C, 77% conversion after
9.5 hours. The enantioenriched starting material was recovered as
colorless oil (18% yield, 95% ee, bp 80 °C at 0.2 mmHg). The NMR
spectra are in agreement with those of rac-1-cyclohexylpent-4-en-1-
Reviews on late transition metal-based catalysts: a) M. Beller, C. Breindl,
M. Eichberger, C. G. Hartung, J. Seayad, O. R. Thiel, A. Tillack, H.
Trauthwein, Synlett 2002, 1579–1594; b) J. F. Hartwig, Pure Appl. Chem.
2004, 76, 507–516; c) R. A. Widenhoefer, X. Han, Eur. J. Org. Chem.
2006, 4555–4563; d) J. J. Brunet, N. C. Chu, M. Rodriguez-Zubiri, Eur.
J. Inorg. Chem. 2007, 4711–4722; e) K. D. Hesp, M. Stradiotto,
ChemCatChem 2010, 2, 1192–1207; f) J. Jenter, A. Lühl, P. W. Roesky,
S. Blechert, J. Organomet. Chem. 2010, 695, 406–418; g) V. Rodriguez-
Ruiz, R. Carlino, S. Bezzenine-Lafollee, R. Gil, D. Prim, E. Schulz, J.
Hannedouche, Dalton Trans. 2015, 44, 12029–12059; h) L. Huang, M.
Arndt, K. Gooßen, H. Heydt, L. J. Gooßen, Chem. Rev. 2015, 115, 2596–
2697; i) For a recent example of an iron-catalyzed hydroamination of
aminoalkenes, see: C. Lepori, E. Bernoud, R. Guillot, S. Tobisch, J.
Hannedouche, Chem. Eur. J. 2019, 25, 835–844.
amine [15]
.
General procedure for kinetic catalytic hydroamination/cyclization
reactions. In a glovebox, a screw cap NMR tube were charged with a
solution of the enantioenriched α-substituted aminopentene (2.0 w% in
[D6]benzene, 200−375 µL, 58.0−74.0 µmol), ferrocene (3.0 mg),
[D6]benzene (to give a total volume of 500 µL), and catalyst (2.0 mol%,
1.16−1.48 µmol, 21−24 µL stock solution in [D6]benzene). The tube was
placed in either 400 or 500 MHz NMR thermostatic probe with temperature
of 25−55 °C and an arrayed experiment was set up to record 1H NMR
spectra automatically in time intervals (30 sec., 1 min., 3 min., 5 min., or
10 min.). The conversion was determined based on the disappearance of
the olefinic signals of the substrate relative to the internal standard
ferrocene. The linear part of the data was fit by least square analysis and
kobs. was determined from the slope α of a plot of concentration of amine
(M) versus time (min.).
[7]
[8]
For reviews on photocatalytic hydroaminations see: (a) K. A. Margrey, D.
A. Nicewicz, Acc. Chem. Res. 2016, 49, 1997–2006; b) D. Menigaux, P.
Belmont, E. Brachet, Eur. J. Org. Chem. 2017, 2008–2055.
a) For a review on the asymmetric formal hydroamination of alkenes
using copper hydride catalysts see: M. T. Pirnot, Y. M. Wang, S. L.
Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48–57; Angew. Chem. 2016,
128, 48–57; b) For a review on the Cope-type hydroamination see: A. M.
Beauchemin, Org. Biomol. Chem. 2013, 11, 7039-7050.
[9]
For reviews on asymmetric hydroamination see: a) P. W. Roesky, T. E.
Müller, Angew. Chem. Int. Ed. 2003, 42, 2708–2710; Angew. Chem.
2003, 115, 2812–2814; b) K. C. Hultzsch, Adv. Synth. Catal. 2005, 347,
367–391; c) I. Aillaud, J. Collin, J. Hannedouche, E. Schulz, Dalton Trans.
2007, 5105–5118; d) G. Zi, Dalton Trans. 2009, 9101–9109; g) S. R.
Chemler, Org. Biomol. Chem. 2009, 7, 3009–3019; e) G. Zi, J.
Organomet. Chem. 2011, 696, 68–75; f) J. Hannedouche, J. Collin, A.
Trifonov, E. Schulz, J. Organomet. Chem. 2011, 696, 255–262; g) J.
Hannedouche, E. Schulz, Chem. Eur. J. 2013, 19, 4972–4985; h) A. L.
Reznichenko, A. J. Nawara-Hultzsch, K. C. Hultzsch, Top. Curr. Chem.
2014, 343, 191–260; i) C. Michon, M. A. Abadie, F. Medina, F. Agbossou-
Niedercorn, J. Organomet. Chem. 2017, 847, 13–27.
Acknowledgments
This work was supported by the National Science Foundation
through a NSF CAREER Award (CHE 0956021).
Keywords: asymmetric catalysis • hydroamination • kinetic
resolution • reaction mechanisms • rare earths
[1]
[2]
a) A. Ricci, Modern Amination Methods, Wiley-VCH, 2000; b) A. Ricci,
Amino Group Chemistry: From Synthesis to the Life Sciences, Wiley-
VCH, 2008; c) Chiral Amine Synthesis: Methods, Developments and
Applications; Nugent, T, Ed.; Wiley-VCH: Weinheim, Germany, 2010.
For general reviews on hydroamination see: a) T. E. Müller, M. Beller,
Chem. Rev. 1998, 98, 675–704; b) J. J. Brunet, D. Neibecker in Catalytic
Heterofunctionalization from Hydroamination to Hydrozirconation, (Eds.
A. Togni, H. Grützmacher), Wiley-VCH, Weinheim, 2001, pp. 91–141; c)
T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev.
2008, 108, 3795–3892; d) S. Doye in Science of Synthesis, Vol. 40a (Ed.
D. Enders), Thieme, Stuttgart, 2009, pp. 241–304; e) A. L. Reznichenko,
K. C. Hultzsch, Top. Organomet. Chem. 2013, 43, 51–114; f) N. Nishina,
Y. Yamamoto, Top. Organomet. Chem. 2013, 43, 115–143; g) A. L.
Reznichenko, K. C. Hultzsch in Organic Reactions, Vol. 88 (Eds. S. E.
Denmark, A. Charette), Wiley: Hoboken, NJ, 2016, pp. 1–554.
[10] For selected examples of highly enantioselective intramolecular
hydroamination of aminoalkenes see: a) M. C. Wood, D. C. Leitch, C. S.
Yeung, J. A. Kozak, L. L. Schafer, Angew. Chem. Int. Ed. 2007, 46, 354–
358; Angew. Chem. 2007, 119, 358–362. b) X. Shen, S. L. Buchwald,
Angew. Chem. Int. Ed. 2010, 49, 564–567; Angew. Chem. 2010, 122,
574–577; c) K. Manna, M. L. Kruse, A. D. Sadow, ACS Catal. 2011, 1,
1637–1642; d) Y. Zhang, W. Yao, H. Li, Y. Mu, Organometallics 2012,
31, 4670–4679; e) X. Zhang, T. J. Emge, K. C. Hultzsch, Angew. Chem.
Int. Ed. 2012, 51, 394–398; Angew. Chem. 2012, 124, 406–410; f) K.
Manna, W. C. Everett, G. Schoendorff, A. Ellern, T. L. Windus, A. D.
Sadow, J. Am. Chem. Soc. 2013, 135, 7235–7250; g) Z. Chai, D. Hua,
K. Li, J. Chu, G. Yang, Chem. Commun. 2014, 50, 177–179; h) L.
Hussein, N. Purkait, M. Biyikal, E. Tausch, P. W. Roesky, Chem.
Commun. 2014, 50, 3862–3864; i) X. Zhou, B. Wei, X. L. Sun, Y. Tang,
Z. Xie, Chem. Commun. 2015, 51, 5751–5753; j) For the highly
enantioselective intermolecular hydroamination of cyclopropenes see: H.
L. Teng, Y. Luo, B. Wang, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem.
Int. Ed. 2016, 55, 15406–15410; Angew. Chem. 2016, 128, 15632–
15636.
[3]
[4]
Reviews on rare-earth metal-catalyzed hydroaminations: a) S. Hong, T.
J. Marks, Acc. Chem. Res. 2004, 37, 673–686; b) A. L. Reznichenko, K.
C. Hultzsch, Struct. Bonding (Berlin) 2010, 137, 1–48; c) A. A. Trifonov,
I. V. Basalov, A. A. Kissel, Dalton Trans. 2016, 45, 19172–19193.
Reviews on Group 4- and actinide-catalyzed hydroaminations: a) I.
Bytschkov, S. Doye, Eur. J. Org. Chem. 2003, 935–946; b) F. Pohlki, S.
Doye, Chem. Soc. Rev. 2003, 32, 104–114; c) S. Doye, Synlett 2004,
1653–1672; d) A. L. Odom, Dalton Trans. 2005, 225–233; e) R. Severin,
S. Doye, Chem. Soc. Rev. 2007, 36, 1407–1420; f) A. V. Lee, L. L.
Schafer, Eur. J. Inorg. Chem. 2007, 2243–2255; g) P. Eisenberger, L. L.
Schafer, Pure Appl. Chem. 2010, 82, 1503–1515; h) T. Andreas, M. S.
Eisen, Chem. Soc. Rev. 2008, 37, 550–567.
[11] For selected examples of highly enantioselective intramolecular
hydroamination reactions of aminodienes and aminoallenes see: a) R. L.
LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc. 2007,
129, 2452–2453; b) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste,
Science 2007, 317, 496–499; c) Z. Zhang, C. F. Bender, R. A.
Widenhoefer, Org. Lett. 2007, 9, 2887–2889; d) R. L. LaLonde, Z. J.
This article is protected by copyright. All rights reserved.