economical4 applications of reagent 1a. The addition
reaction of 1a to alkynes 2aÀe requires relatively high
temperatures (typically 80À100 °C) and usually catalytic
amounts (10 mol %) of CuI. The isolated yield for the
reaction of phenyl acetylene 2a is about the same with
catalytic (entry 1) and stoichiometric amounts (entry 2) of
CuI. However, in the case of anisyl derivative 2b the yield
dropped substantially when the reaction was conducted
with 10 mol % CuI (entry 3) instead of a stoichiometric
amount (entry 4). Because of the limited thermostability of
1a, heating of the reaction mixture for extended times
decreased the yield. Therefore, using microwave condi-
tions was found to be beneficial in several cases (e.g.,
entries 5 and 7). The reactions usually proceed cleaner
and with better yields, when the substrates have electron
supplying substituents. For example, we obtained a better
yield with anisyl derivative 2b and methoxy naphthyl
substrate 2d than with nitro phenyl acetylene 2c.
Scheme 1. Examples for Trifluoromethylation by Addition to
CarbonÀcarbon Double and Triple Bonds (Ar = 2-Iodo-
phenyl)
Furthermore, silyl acetylene 2e could easily be func-
tionalized to give 4e, probably due to the presence of the
electron donating silyl functionality. In this case micro-
wave conditions gave the best yields. When the reac-
tion was conducted by traditional heating for extended
times, the yield dropped due to the decomposition of
product 4e. The addition reactions proved to be highly
regio- and stereoselective. The presented trifluoro-
methyl styrene derivatives 4aÀe are isolated as single
isomers. Although, the crude mixture contained some
unidentified byproducts, we could not find any evidence
for the formation of other regio- or stereoisomers.
Authentic synthesis (see Supporting Information) of 4b
has shown that the addition of 1a across the triple bond
occurs with trans selectivity.
Alkenes, such as 3aÀe, also undergo smooth addition
reactions with 1a using copper catalysis. In these reactions
the corresponding trifluoromethyl alkanes 5aÀe are formed
with high regioselectivity. Similarly to alkynes the reaction
proceeds with higher yield and more cleanly for electron-
rich styrenes. The addition reaction is relatively tolerant of
steric effects, as both para methoxy (3a) and ortho methoxy
styrene (3b) could be efficiently functionalized.
However, the reaction is faster for 3a than for 3b (see
below). Disubstituted alkene 3e also undergoes trifluoro-
methyl-benzoyloxylation reaction to give tertiary alcohol
derivative 5e. This process is more sluggish than the
reaction of the analog styrene derivatives and requires
microwave heating to proceed with high yield (Table 1,
entry 13). Not only styrene derivatives but also vinyl
sulfide (3d) and silane (3f) substrates undergo addition
reactions. Vinyl sulfide 3d reacted similarly to styrenes
3aÀc and 3e to give the expected trifluoromethyl benzoate
product 5d. However, vinyl silane 3f showed a surprising
reactivity. At elevated temperatures 3f and 1a with a
catalytic or stoichiometric amount of CuI gave a complex
mixture of products. On the other hand, when the reaction
was conducted at 20 °C with a stoichiometric amount of
CuI, compound 6awas formedinhighyield and selectivity.
In this reaction an iodide functionality was introduced
instead of an iodobenzoate. Furthermore, when CuI was
replaced by CuBr a bromination of the silylated carbon
occurred (entry 14) affording 6b. Thus, in the presence of a
silyl substituent the trifluoromethyl-benzoyloxylation re-
action of alkenes can be switched to a trifluoromethyl-
halogenation process further extending the synthetic poten-
tial of the above methodology.
(2) (a) Gouverneur, V. Science 2009, 325, 1630. (b) Grushin, V. V.
Acc. Chem. Res. 2009, 43, 160. (c) Sato, K.; Tarui, A.; Omote, M.; Ando,
A.; Kumadaki, I. Synthesis 2010, 1865. (d) Nagib, D. A.; MacMillan,
D. W. C. Nature 2011, 480, 224. (e) Parsons, A. T.; Buchwald, S. L.
Nature 2011, 480, 184. (f) Watson, D. A.; Su, M.; Teverovskiy, G.;
Zhang, Y.; Garcıa-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science
´
2009, 325, 1661. (g) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.;
Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (h) Wang, X.;
Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648. (i) Xu, J.; Fu,
Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L.
J. Am. Chem. Soc. 2011, 133, 15300. (j) Wang, X.; Ye, Y.; Zhang, S.; Feng,
J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (k)
Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (l)
Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986.
(m) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.;
Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
14411. (n) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed.
2007, 46, 754. (o) Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.;
Niedermann, K.; Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332. (p)
€
Niedermann, K.; Fruh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.;
Togni, A. Angew. Chem., Int. Ed. 2011, 50, 1059. (q) Tomashenko, O. A.;
ꢀ
Escudero-Adan, E. C.; Martınez Belmonte, M.; Grushin, V. V. Angew.
´
Chem., Int. Ed. 2011, 50, 7655. (r) Zanardi, A.; Novikov, M. A.; Martin,
E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133,
20901. (s) Prakash, G. K. S.; Krishnan, H. S.; Jog, P. V.; Iyer, A. P.;
Olah, G. A. Org. Lett. 2012, 14, 1146. (t) Sato, K.; Omote, M.; Ando, A.;
ꢁ
Kumadaki, I. Org. Lett. 2004, 6, 4359. (u) Matousek, V.; Togni, A.;
Bizet, V.; Cahard, D. Org. Lett. 2011, 13, 5762. (v) Sato, K.; Yuki, T.;
Yamaguchi, R.; Hamano, T.; Tarui, A.; Omote, M.; Kumadaki, I.;
Ando, A. J. Org. Chem. 2009, 74, 3815. (w) Weng, Z.; Li, H.; He, W.;
Yao, L.-F.; Tan, J.; Chen, J.; Yuan, Y.; Huang, K.-W. Tetrahedron 2012,
68, 2527. (x) Chu, L.; Qing, F.-L. Org. Lett. 2012, 14, 2106. (y) Parsons,
A. T.; Senecal, T. D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51,
2947.
(3) (a) Kitazume, T.; Ishikawa, N. J. Am. Chem. Soc. 1985, 107, 5186.
(b) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. Org. Synth. 2009, Coll.
Vol. 11, 336. (c) Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z. Org.
Lett. 2001, 3, 1069. (d) Fuchikami, T.; Ojima, I. Tetrahedron Lett. 1984,
25, 303. (e) Uneyama, K.; Kitagawa, K. Tetrahedron Lett. 1991, 32,
3385. (f) Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1992, 57, 4676.
(4) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259.
Org. Lett., Vol. 14, No. 11, 2012
2883