localized in the outermost benzene rings. In sharp contrast, the
NICS for the naphthalene part in NDF3/NDF4 (ꢀ10.5 and
ꢀ10.4 ppm, respectively) is very close to that of naphthalene,
strongly implying the localized aromatic nature on the
naphthalene part in the NDF3 structure. In the case of
NDT3/NDT4, the NICS was calculated to be ꢀ9.3 ppm,
which is in between the two extremes, chrysene and naphthalene.
The value, however, is slightly larger than that of naphthalene,
indicating that reduced aromaticity in the naphthalene part in
NDT3/NDT4 is most likely.
(b) K. C. Dickey, J. E. Anthony and Y. L. Loo, Adv. Mater.,
2006, 18, 1721–1726; (c) J. E. Anthony, Chem. Rev., 2006, 106,
5028–5048; (d) J. E. Anthony, Angew. Chem. Int., Ed., 2008, 47,
452–483; (e) S. Subramanian, S. K. Park, S. R. Parkin,
V. Podzorov, T. N. Jackson and J. E. Anthony, J. Am. Chem.
Soc., 2008, 130, 2706–2707; (f) M.-C. Chen, C. Kim, S.-Y. Chen,
Y.-J. Chiang, M.-C. Chung, A. Facchetti and T. J. Marks,
J. Mater. Chem., 2008, 18, 1029–1036.
5 (a) Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li and
L. Yu, J. Am. Chem. Soc., 2009, 131, 56–57; (b) Y. Liang, D. Feng,
Y. Wu, S.-T. Tsai, G. Li, C. Ray and L. Yu, J. Am. Chem. Soc.,
2009, 131, 7792–7799; (c) L. Huo, J. Hou, S. Zhang, H. Y. Chen
and Y. Yang, Angew. Chem., Int. Ed., 2010, 49, 1500–1503;
(d) Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray
and L. Yu, Adv. Mater., 2010, 22, E135–E138; (e) C. Piliego,
T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and
J. M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 7595–7597;
(f) Y. Zhang, S. K. Hau, H.-L. Yip, Y. Sun, O. Acton and
A. K. Y. Jen, Chem. Mater., 2010, 22, 2696–2698; (g) Y. Zou,
A. Najari, P. Berrouard, S. Beaupre, B. Reda Aich, Y. Tao and
M. Leclerc, J. Am. Chem. Soc., 2010, 132, 5330–5331; (h) P.-L. T.
Boudreault, A. Najari and M. Leclerc, Chem. Mater., 2011, 23,
456–469.
In summary, we experimentally demonstrated that the
electronic structures of the angular-shaped NDFs are signifi-
cantly different from those of their corresponding NDTs, and
the origin of the difference can be boiled down to the distinct
aromaticity between furan and thiophene that strongly affects
the overall electronic structure of naphthodichalcogenophenes.
As a result, the angular-shaped NDFs should not be iso-
electronic with chrysene and are totally different p-electronic
systems from the thiophene counterparts. Although the
angular-shaped NDF3/NDF4 has not so far been exploited
as the building units for optoelectronic materials,18 their
characteristic features including relatively high-lying HOMO
energy levels make it an interesting ingredient for the
development of new functional p-materials.
This work was financially supported by Grants-in-Aid for
Scientific Research (No. 23245041) from MEXT, Japan, The
Strategic Promotion of Innovative Research and Development
from the Japan Science and Technology Agency, and a
Founding Program for World-Leading R&D on Science and
Technology (FIRST), Japan. One of the authors (SS) is grate-
ful for the research fellowship for young scientists from JSPS.
6 (a) M. T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey,
D. J. Herman, A. V. Bapat, J. E. Anthony and G. G. Malliaras,
J. Am. Chem. Soc., 2007, 129, 9144–9149; (b) Z. Li, Y.-F. Lim,
J. B. Kim, S. R. Parkin, Y.-L. Loo, G. G. Malliaras and
J. E. Anthony, Chem. Commun., 2011, 47, 7617–7619.
7 M. M. Payne, S. A. Odom, S. R. Parkin and J. E. Anthony, Org.
Lett., 2004, 6, 3325–3328.
8 The present numbering of NDT isomers, i.e., NDT1 for
naphtho[2,3-b;6,7-b0]dithiophene, NDT2 for naphtho[2,3-b;7,6-b0]-
dithiophene, NDT3 for naphtho[1,2-b;5,6-b0]dithiophene, and
NDT4 for naphtho[2,1-b;6,5-b0]dithiophene, is just for convenience
without any scientific significance, which follows our recent
publications (ref. 9b and 10b). The same numbering is used for
naphthodifuran (NDF) isomers in this article.
9 (a) S. Shinamura, E. Miyazaki and K. Takimiya, J. Org. Chem.,
2010, 75, 1228–1234; (b) S. Shinamura, I. Osaka, E. Miyazaki,
A. Nakao, M. Yamagishi, J. Takeya and K. Takimiya, J. Am.
Chem. Soc., 2011, 133, 5024–5035.
10 (a) I. Osaka, T. Abe, S. Shinamura, E. Miyazaki and K. Takimiya,
J. Am. Chem. Soc., 2010, 132, 5000–5001; (b) I. Osaka, T. Abe,
S. Shinamura and K. Takimiya, J. Am. Chem. Soc., 2011, 133,
6852–6860; (c) I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa
and K. Takimiya, ACS Macro Lett., 2012, 1, 437–440.
11 M. Nakano, H. Mori, S. Shinamura and K. Takimiya, Chem.
Mater., 2012, 24, 190–198.
Notes and references
1 (a) P. Beimling and G. Kossmehl, Chem. Ber., 1986, 119,
3198–3203; (b) K. Takimiya, Y. Konda, H. Ebata, N. Niihara
and T. Otsubo, J. Org. Chem., 2005, 70, 10569–10571;
(c) T. Kashiki, S. Shinamura, M. Kohara, E. Miyazaki,
K. Takimiya, M. Ikeda and H. Kuwabara, Org. Lett., 2009, 11,
2473–2475.
12 P. R. Dingankar, T. S. Gore and V. N. Gogte, Indian J. Chem.,
1971, 9, 24–30.
13 A. P. Kuriakose and S. Sethna, J. Indian Chem. Soc., 1966, 43, 435–439.
14 A. S. Wheeler and D. R. Ergle, J. Am. Chem. Soc., 1930, 52,
4872–4880.
15 (a) W.-M. Dai and K. W. Lai, Tetrahedron Lett., 2002, 43,
9377–9380; (b) N. Hayashi, Y. Saito, H. Higuchi and K. Suzuki,
J. Phys. Chem. A, 2009, 113, 5342–5347.
2 (a) J. G. Laquindanum, H. E. Katz and A. J. Lovinger, J. Am.
Chem. Soc., 1998, 120, 664–672; (b) B. Tylleman, C. M. L. Vande
Velde, J.-Y. Balandier, S. Stas, S. Sergeyev and Y. H. Geerts, Org.
Lett., 2011, 13, 5208–5211.
3 (a) J. G. Laquindanum, H. E. Katz, A. J. Lovinger and
A. Dodabalapur, Adv. Mater., 1997, 9, 36–39; (b) K. Takimiya,
Y. Kunugi, Y. Konda, N. Niihara and T. Otsubo, J. Am. Chem.
Soc., 2004, 126, 5084–5085; (c) T. Kashiki, E. Miyazaki and
K. Takimiya, Chem. Lett., 2008, 284–285; (d) Q. Meng, L. Jiang,
Z. Wei, C. Wang, H. Zhao, H. Li, W. Xu and W. Hu, J. Mater.
Chem., 2010, 20, 10931–10935; (e) H. Pan, Y. Li, Y. Wu, P. Liu,
B. S. Ong, S. Zhu and G. Xu, Chem. Mater., 2006, 18, 3237–3241;
(f) H. Pan, Y. Wu, Y. Li, P. Liu, B. S. Ong, S. Zhu and G. Xu, Adv.
Funct. Mater., 2007, 17, 3574–3579; (g) H. Pan, Y. Li, Y. Wu,
P. Liu, B. S. Ong, S. Zhu and G. Xu, J. Am. Chem. Soc., 2007, 129,
4112–4113.
16 Theoretical MO calculations also reproduced a similar trend of
HOMO and LUMO energy levels for NDF1/NDT1 NDF3/NDT3
and NDF4/NDT4 (See Fig. S2, ESIz).
17 P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. v. E.
Hommes, J. Am. Chem. Soc., 1996, 118, 6317–6318.
18 After submission of this manuscript, synthesis and transistor
characteristics of diphenyl and di(p-octylphenyl) derivatives of
NDF4 were reported; see C. Mitsui, J. Soeda, K. Miwa,
H. Tsuji, J. Takeya and E. Nakamura, J. Am. Chem. Soc., 2012,
134, 5448–5451.
4 (a) M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo and
T. N. Jackson, J. Am. Chem. Soc., 2005, 127, 4986–4987;
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5671–5673 5673