5368
J. Li et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5363–5369
9:1)], and subfaction E52 was separated by RP-HPLC with MeOH–H2O (1:1) to
Table 4
afford compound 5 (tR 19.8 min, 21.5 mg), compound 15 (tR 27.1 min, 16.5 mg),
and compound 4 (tR 27.2 min, 10.6 mg). Fraction E8 (5.2 g) was subjected to a
Sephadex LH-20 column [CHCl3–MeOH (1:1)] to give four subfractions (E81–
E84). Fraction E82 was purified by RP-HPLC [MeOH–H2O (1:1)] to obtain
compound 16 (tR 23.3 min, 22.5 mg) and compound 6 (tR 28.2 min, 19.7 mg).
Fraction E83 was purified by RP-HPLC [MeOH–H2O (4:6)] to obtain compound
1 (tR 31.3 min, 36.5 mg), compound 12 (tR 35.6 min, 26.1 mg) and compound 2
(tR 40.2 min, 12.7 mg). The n-BuOH extract (82 g) was subjected to silica gel CC
with CHCl3–MeOH (100:2 to 0:100) to obtain eight fractions (B1–B8). Fraction
B3 (15.8 g) was then subjected to Sephadex LH-20 (CHCl3–MeOH, 1:1) and
Inhibitory effect of compounds isolated from Curcuma kwangsiensis on NO production
induced by LPS in macrophagesa
Compound
IC50 SD (
l
M)
Compound
IC50 SD (
>100
11.49 1.03
25.79 2.15
7.98 0.66
>100
46.37 4.22
9.37 0.89
12.96 1.16
40.64 3.22
lM)
1c
3.13 0.33
2.81 0.26
2.41 0.18
75.71 6.46
82.84 6.83
37.51 2.78
32.00 3.28
35.50 3.41
10.67 1.02
9.52 0.87
7a
9a
2
3c
12
4
5
6
13c
14
15
separated by RP-HPLC with MeOH–H2O (7:13) to afford compound
7 (tR
7
16c
35.1 min, 11.8 mg), compound 8 (tR 38.6 min, 13.4 mg), compound 7a (tR
41.5 min, 28.1 mg), and compound 14 (tR 45.3 min, 33.2 mg). Fraction B4
(12.4 g) was purified by ODS open CC [MeOH–H2O (1:4 to 9:1)], and fraction
B43 by RP-HPLC with MeOH–H2O (3:7) to afford the mixture of 10 and 11 (tR
34.2 min, 40.6 mg), compound 13 (tR 39.1 min, 14.2 mg) and compound 9 (tR
42.5 min, 35.2 mg).
8c
Indomethacinb
Hydrocortisoneb
9
10,11c
a
NO concentration of control group: 3.24 0.21
lM. NO concentration of LPS-
12. rel-(3R,5S)-3,5-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-
treated group: 33.46 2.13
l
M.
heptane (1): yellowish oil; ½a D25
ꢀ
: +0.2 (c 0.1, MeOH); UV kmax (MeOH) nm (log
b
Positive control.
): 280.6 (3.65); IR (KBr) m
max cm-1: 3319, 2941, 1610, 1514, 1449, 1367, 1239,
c
e
Cytotoxicity (100 lM). Other compounds show no cytotoxicity.
1112, 826; for 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz),
spectroscopic data, see Table 1; HR-ESI-MS m/z 355.1514 (calcd. for
C
19H24O5Na, 355.1516).
13. Yokosuka, A.; Mimaki, Y.; Sakagami, H.; Sashida, Y. J. Nat. Prod. 2002, 65, 283.
14. Kikuzaki, H.; Usuguchi, J.; Nakatani, N. Chem. Pharm. Bull. 1991, 39, 120.
15. Ma, J.; Jin, X.; Yang, L.; Liu, Z.-L. Phytochemistry 2004, 65, 1137.
positive controls. Compounds 1, 2, and 3 showed strong inhibitory
activity on NO production with IC50 values of 3.13, 2.81 and
2.41 lM, respectively. From the structural features of the diaryl-
heptanoid skeleton, it was found that the stereochemistry of
C-3 and C-5 could influence the inhibitory effects on NO produc-
tion, and these compounds with two syn type of hydroxyl
groups in C-3 and C-5 exhibited conspicuously inhibitory activity
(e.g., 1, 2, 3).
16. rel-(3R,5S)-3,5-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxy-
phenyl)heptane (2): yellowish oil; ½a D25
ꢀ
: +0.4 (c 0.1, MeOH); UV kmax (MeOH)
nm (log e
): 282.4 (3.85); IR (KBr) mmax cm-1: 3331, 2940, 1604, 1517, 1451,
1369, 1278, 1152, 1059, 1032, 816; for 1H NMR (CD3OD, 600 MHz) and 13C
NMR (CD3OD, 150 MHz), spectroscopic data, see Table 1; HR-ESI-MS m/z
369.1671 (calcd. for C20H26O5Na, 369.1672). rel-(3R,5S)-3,5-dihydroxy-1-(3-
methoxy-4,5-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptane (3): yellowish
oil; ½a 2D5
ꢀ
: 0 (c 0.1, MeOH); UV kmax (MeOH) nm (log e): 279.2 (3.71); IR (KBr)
mmax cmꢂ1: 3234, 2938, 1677, 1602, 1516, 1452, 1272, 1202, 1128, 1033, 800;
for 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz), spectroscopic
data, see Table 1; HR-ESI-MS m/z 363.1802 (calcd. for C20H27O6, 363.1802).
(5S)-5-hydroxy-1-(4-hydroxyphenyl)-7-phenyl-3-heptanone (4): yellowish
Acknowledgements
oil; ½a 2D5
ꢀ
: +15.3 (c 0.1, MeOH); UV kmax (MeOH) nm (log e): 278.0 (3.03); IR
The research was supported by National Key Science and
Technology Special Project (2009ZX09301-012) and Program for
Liaoning Excellent Talents in University (LR201037).
(KBr) m
max cmꢂ1: 3389, 2925, 1712, 1614, 1513, 1449, 1403, 1386, 1211, 1116,
1040, 974, 753; CD (CHCl3) kmax
(
D
e
): 297.0 (ꢂ0.050); for 1H NMR (CD3OD,
600 MHz) and 13C NMR (CD3OD, 75 MHz), spectroscopic data, see Table 2; HR-
ESI-MS m/z 316.1904 (calcd. for C19H26O3N, 316.1907).
17. Itokawa, H.; Morita, H.; Midorikawa, I.; Aiyama, R.; Morita, M. Chem. Pharm.
Bull. 1985, 33, 4889.
Supplementary data
18. (5S)-5-Hydroxy-1-(4-hydroxyphenyl)-7-(3,4-dihydroxyphenyl)-3-heptanone
(5): yellowish oil; ½a D25
ꢀ
: +11.2 (c 0.1, MeOH); UV kmax (MeOH) nm (log e): 282.0
Supplementary data associated with this article can be found, in
(3.65); IR (KBr) mmax cmꢂ1: 3439, 2943, 1697, 1614, 1516, 1447, 1400, 1370,
1230, 1173, 1106, 974, 823; CD (CHCl3) kmax
(D
e
): 292.6 (ꢂ0.048); for 1H NMR
(CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz), spectroscopic data, see
Table 2; HR-ESI-MS m/z 353.1358 (calcd. for C19H22O5Na, 353.1359).
19. Kato, N.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1984, 32, 3323.
References and notes
1. Sasaki, Y.; Goto, H.; Tohda, C.; Hatanaka, F.; Shibahara, N.; Shimada, Y.;
Terasawa, K.; Komatsu, K. Biol. Pharm. Bull. 2003, 26, 1135.
2. Suksamrarn, A.; Ponglikitmongkol, M.; Wongkrajang, K.; Chindaduang, A.;
Kittidanairak, S.; Jankam, A.; Yingyongnarongkul, B.-e.; Kittipanumat, N.;
Chokchaisiri, R.; Khetkam, P.; Piyachaturawat, P. Bioorg. Med. Chem. 2008, 16,
6891.
3. Kaewamatawong, R.; Boonchoong, P.; Teerawatanasuk, N. Phytochem. Lett.
2009, 2, 19.
4. Matsuda, H.; Morikawa, T.; Ninomiya, K.; Yoshikawa, M. Bioorg. Med. Chem.
2001, 9, 909.
5. Ohshiro, M.; Kuroyanagi, M.; Ueno, A. Phytochemistry 1990, 29, 2201.
6. Winuthayanon, W.; Suksen, K.; Boonchird, C.; Chuncharunee, A.;
Ponglikitmongkol, M.; Suksamrarn, A.; Piyachaturawat, P. J. Agric. Food Chem.
2009, 57, 840.
7. Matsuda, H.; Morikawa, T.; Ninomiya, K.; Yoshikawa, M. Tetrahedron 2001, 57,
8443.
20. Methylation of Compound 5: The mixture of 5 (4 mg) and trimethyl-
silyldiazomethane (2.0 M solution in n-hexane) (0.8 mL) in MeOH (1.0 mL)
were stirred at room temperature overnight. After the excess of
trimethylsilyldiazomethane was decomposed with AcOH, the reaction
mixture was evaporated to dryness. The resulting residue was purified by
preparative TLC (cyclohexane–acetone, 4:1, Rf = 0.42) and yielded 5a (3.4 mg).
21. (5S)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-3-
heptanone (6): yellowish oil; ½a D25
ꢀ
: +12.6 (c 0.1, MeOH); UV kmax (MeOH) nm
(log e
): 282.3 (3.76); IR (KBr) mmax cmꢂ1: 3414, 2938, 1694, 1605, 1515, 1451,
1371, 1273, 1152, 1117, 1033, 958, 815; CD (CHCl3) kmax (De): 296.8 (ꢂ0.047);
for 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz), spectroscopic
data, see Table 2; HR-ESI-MS m/z 367.1523 (calcd. for C20H24O5Na, 367.1516).
22. Kikuzaki, H.; Kobayashi, M.; Nakatani, N. Phytochemistry 1991, 30, 3647.
23. (3R,5R)-3-Acetoxy-5-hydroxy-1,7-bis(4-hydroxyphenyl)heptane (7):
yellowish oil; ½a D25
ꢀ
: +14.3 (c 0.1, MeOH); UV kmax (MeOH) nm (log e): 279.0
(3.77); IR (KBr) mmax cmꢂ1: 3337, 2941, 1708, 1613, 1513, 1450, 1376, 1262,
1030, 827; for 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz),
spectroscopic data, see Table 3; HR-ESI-MS m/z 381.1675 (calcd. for
8. Song, E.-K.; Cho, H.; Kim, J.-S.; Kim, N.-Y.; An, N.-H.; Kim, J.-A.; Lee, S.-H.; Kim,
Y.-C. Planta Med. 2001, 67, 876.
9. Cho, J.-Y.; Choi, G. J.; Lee, S.-W.; Jang, K. S.; Lim, H. K.; Lim, C. H.; Lee, S. O.; Cho,
K. Y.; Kim, J.-C. J. Microbiol. Biotechnol. 2006, 16, 280.
C21H26O5Na, 381.1672).
24. Hydrolysis of 7, 8, 9, and mixtures of 10 and 11: To a solution of 7 (6.0 mg) in
MeOH (1.5 mL), a drop of analytical grade HCl was added. The resulting
mixture was stirred at room temperature overnight and dried under vacuum.
The residue was purified by preparative TLC (CHCl3–MeOH, 5:1, Rf = 0.42) and
yielded 7a (4.3 mg). Following the above procedure, the corresponding
deacetyl derivatives (8a, 9a, and mixtures of 10a and 11a) were prepared
from 8, 9, and mixtures of 10 and 11, respectively.
10. Li, J.; Zhao, F.; Li, M. Z.; Chen, L. X.; Qiu, F. J. Nat. Prod. 2010, 73, 1667.
11. The rhizomes of C. kwangsiensis (10 kg) were cut into approximately 2 cm
pieces and repeatedly (ꢁ3) extracted with EtOH–H2O (7:3, v/v, 100 L) for 2 h.
The combined extracts were concentrated in vacuo, suspended in H2O, and
partitioned successively with cyclohexane, EtOAc, and n-BuOH. The EtOAc
extract (65 g) was subjected to silica gel CC with CHCl3–MeOH (100:1 to 0:100)
to obtain nine fractions (E1–E9), which were combined according to TLC
analysis. Fraction E3 (6 g) was chromatographed on a Sephadex LH-20 column
with CHCl3–MeOH (1:1) to give three subfractions (E31–E33). Fraction E32
(2.1 g) was purified by ODS open column chromatography [MeOH–H2O (1:9 to
9:1)], and resolution of fraction E323 by RP-HPLC with MeOH–H2O (3:2) to
afford compound 9a (tR 26.8 min, 16.5 mg) and compound 3 (tR 34.2 min,
40.6 mg). Fraction E5 (8.1 g) was subjected to ODS CC [MeOH–H2O (2:8 to
25. (3R,5R)-3-Acetoxy-5-hydroxy-1,7-bis(3,4-dihydroxyphenyl)heptane
(8):
): 283.2
yellowish oil; ½a D25
ꢀ
: +18.1 (c 0.1, MeOH); UV kmax (MeOH) nm (log
e
(3.64); IR (KBr) mmax cm-1: 3336, 2943, 1708, 1605, 1524, 1445, 1376, 1281,
1114, 1023, 958, 813; for 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD,
150 MHz), spectroscopic data, see Table 3; HR-ESI-MS m/z 413.1578 (calcd. for
C
21H26O7Na, 413.1571). (3R,5R)-3,5-diacetoxy-1-(3,4-dihydroxyphenyl)-7-(4-
hydroxyphenyl)heptane (9): yellowish oil; ½a D25
ꢀ
: +17.2 (c 0.1, MeOH); UV kmax