Journal of the American Chemical Society
Communication
31P NMR, based on total Fe). Addition of H218O to the green
intermediate followed by reaction with PPh3 led to 49% 18O-
labeled OPPh3. In contrast, sulfinato complex 2 did not react
with either dimedone or PPh3 under the same conditions.
These data are consistent with the presence of a sulfenato−iron
intermediate containing an exchangeable O atom, although the
presence of other intermediates at this stage, including doubly
oxygenated sulfinato species, cannot be ruled out.
In summary, we have reported the synthesis of a novel
N4S(thiolate) ligand that functions as designed to give
[FeII(N3PyS)]+, a structural analogue of substrate-bound
CDO. The incorporation of a single thiolate donor into the
coordination sphere to mimic the Cys sulfur ligation in the
enzyme was critical for the reactivity of the FeII complex with
O2. In contrast, the all-N analogue N4Py is completely inert to
O2 in the absence of coreductants. The present findings, in
comparison with those for our previous CDO model
complexes, suggest that a facial arrangement of the N donors
about the FeII center biases the O2 reactivity toward production
of the biologically relevant sulfinato product. Although more
work is needed to understand the mechanism of S-oxygenation
of 1, the preliminary data suggest that the O2 addition proceeds
through monooxygenase-like steps, as indicated by calculations
for the CDO mechanism.3b
(d) Thibon, A.; England, J.; Martinho, M.; Young, V. G., Jr.; Frisch, J.
R.; Guillot, R.; Girerd, J.-J.; Munck, E.; Que, L., Jr.; Banse, F. Angew.
̈
Chem., Int. Ed. 2008, 47, 7064. (e) A CDO model study employing O2
was recently described. See: Sallmann, M.; Siewert, I.; Fohlmeister, L.;
Limberg, C.; Knispel, C. Angew. Chem., Int. Ed. 2012, 51, 2234.
(5) (a) Jiang, Y. B.; Widger, L. R.; Kasper, G. D.; Siegler, M. A.;
Goldberg, D. P. J. Am. Chem. Soc. 2010, 132, 12214. (b) Badiei, Y. M.;
Siegler, M. A.; Goldberg, D. P. J. Am. Chem. Soc. 2011, 133, 1274.
(c) Kumar, D.; Sastry, G. N.; Goldberg, D. P.; de Visser, S. P. J. Phys.
Chem. A 2012, 116, 582.
(6) (a) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B.; Que,
L., Jr. Angew. Chem., Int. Ed. Engl. 1995, 34, 1512. (b) Ho, R. Y. N.;
Roelfes, G.; Hermant, R.; Hage, R.; Feringa, B. L.; Que, L., Jr. Chem.
Commun. 1999, 2161. (c) Klinker, E. J.; Kaizer, J.; Brennessel, W. W.;
Woodrum, N. L.; Cramer, C. J.; Que, L., Jr. Angew. Chem., Int. Ed.
2005, 44, 3690.
(7) (a) Roelfes, G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J.-
U.; Zondervan, C.; la Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A.
L.; Hage, R.; Feringa, B. L.; Munck, E.; Que, L., Jr. Inorg. Chem. 2003,
̈
42, 2639. (b) Ligtenbarg, A. G. J.; Oosting, P.; Roelfes, G.; La Crois, R.
M.; Lutz, M.; Spek, A. L.; Hage, R.; Feringa, B. L. Chem. Commun.
2001, 385. (c) Roelfes, G.; Branum, M. E.; Wang, L.; Que, L., Jr.;
Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11517. (d) Sen Soo, H.;
Komor, A. C.; Iavarone, A. T.; Chang, C. J. Inorg. Chem. 2009, 48,
10024. (e) van den Heuvel, M.; van den Berg, T. A.; Kellogg, R. M.;
Choma, C. T.; Feringa, B. L. J. Org. Chem. 2004, 69, 250.
(8) Thapper, A.; Behrens, A.; Fryxelius, J.; Johansson, M. H.;
Prestopino, F.; Czaun, M.; Rehder, D.; Nordlander, E. Dalton Trans.
2005, 3566.
ASSOCIATED CONTENT
* Supporting Information
■
S
(9) Zang, Y.; Kim, J.; Dong, Y. H.; Wilkinson, E. C.; Appelman, E.
H.; Que, L., Jr. J. Am. Chem. Soc. 1997, 119, 4197.
(10) (a) Namuswe, F.; Kasper, G. D.; Sarjeant, A. A. N.; Hayashi, T.;
Experimental details, spectra, electrochemical data, and
crystallographic data (CIF). This material is available free of
Krest, C. M.; Green, M. T.; Moenne-Loccoz, P.; Goldberg, D. P. J. Am.
̈
Chem. Soc. 2008, 130, 14189. (b) Kitagawa, T.; Dey, A.; Lugo-Mas, P.;
Benedict, J. B.; Kaminsky, W.; Solomon, E.; Kovacs, J. A. J. Am. Chem.
Soc. 2006, 128, 14448.
AUTHOR INFORMATION
Corresponding Author
■
(11) (a) Buonomo, R. M.; Font, I.; Maguire, M. J.; Reibenspies, J. H.;
Tuntulani, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 1995, 117, 963.
(b) Mullins, C. S.; Grapperhaus, C. A.; Frye, B. C.; Wood, L. H.; Hay,
A. J.; Buchanan, R. M.; Mashuta, M. S. Inorg. Chem. 2009, 48, 9974.
(c) Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31,
451. (d) Masitas, C. A.; Kumar, M.; Mashuta, M. S.; Kozlowski, P. M.;
Grapperhaus, C. A. Inorg. Chem. 2010, 49, 10875. (e) Masitas, C. A.;
Mashuta, M. S.; Grapperhaus, C. A. Inorg. Chem. 2010, 49, 5344.
(f) Galardon, E.; Giorgi, M.; Artaud, I. Chem. Commun. 2004, 286.
(g) Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am.
Chem. Soc. 2003, 125, 11492.
(12) (a) Heinrich, L.; Li, Y.; Vaissermann, J.; Chottard, G.; Chottard,
J.-C. Angew. Chem., Int. Ed. 1999, 38, 3526. (b) Lugo-Mas, P.; Taylor,
W.; Schweitzer, D.; Theisen, R. M.; Xu, L.; Shearer, J.; Swartz, R. D.;
Gleaves, M. C.; DiPasquale, A.; Kaminsky, W.; Kovacs, J. A. Inorg.
Chem. 2008, 47, 11228. (c) Noveron, J. C.; Olmstead, M. M.;
Mascharak, P. K. J. Am. Chem. Soc. 2001, 123, 3247. (d) Tyler, L. A.;
Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1999,
38, 616.
(13) Hong, S.; Lee, Y.-M.; Shin, W.; Fukuzumi, S.; Nam, W. J. Am.
Chem. Soc. 2009, 131, 13910.
(14) Collins, M. J.; Ray, K.; Que, L., Jr. Inorg. Chem. 2006, 45, 8009.
(15) Heinrich, L.; Mary-Verla, A.; Li, Y.; Vaissermann, J.; Chottard,
J.-C. Eur. J. Inorg. Chem. 2001, 2203.
(16) (a) Heinecke, J.; Ford, P. C. J. Am. Chem. Soc. 2010, 132, 9240.
(b) Seo, Y. H.; Carroll, K. S. Angew. Chem., Int. Ed. 2011, 50, 1342.
(17) (a) Farmer, P. J.; Verpeaux, J.-N.; Amatore, C.; Darensbourg, M.
Y.; Musie, G. J. Am. Chem. Soc. 1994, 116, 9355. (b) Lugo-Mas, P.;
Dey, A.; Xu, L.; Davin, S. D.; Benedict, J.; Kaminsky, W.; Hodgson, K.
O.; Hedman, B.; Solomon, E. I.; Kovacs, J. A. J. Am. Chem. Soc. 2006,
128, 11211.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The NIH (GM62309) is gratefully acknowledged for financial
support, and Y.J. is grateful for the Ernest M. Marks Fellowship.
■
REFERENCES
■
(1) (a) Joseph, C. A.; Maroney, M. J. Chem. Commun. 2007, 3338.
(b) McCoy, J. G.; Bailey, L. J.; Bitto, E.; Bingman, C. A.; Aceti, D. J.;
Fox, B. G.; Phillips, G. N., Jr. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
3084. (c) Simmons, C. R.; Liu, Q.; Huang, Q. Q.; Hao, Q.; Begley, T.
P.; Karplus, P. A.; Stipanuk, M. H. J. Biol. Chem. 2006, 281, 18723.
(d) Stipanuk, M. H.; Ueki, I.; Dominy, J. E., Jr.; Simmons, C. R.;
Hirschberger, L. L. Amino Acids 2009, 37, 55. (e) Ye, S.; Wu, X.; Wei,
L.; Tang, D. M.; Sun, P.; Bartlam, M.; Rao, Z. H. J. Biol. Chem. 2007,
282, 3391.
(2) (a) Gardner, J. D.; Pierce, B. S.; Fox, B. G.; Brunold, T. C.
Biochemistry 2010, 49, 6033. (b) Tchesnokov, E. P.; Wilbanks, S. M.;
Jameson, G. N. L. Biochemistry 2012, 51, 257.
(3) (a) Crawford, J. A.; Li, W.; Pierce, B. S. Biochemistry 2011, 50,
10241. (b) Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc.
2011, 133, 3869. (c) Simmons, C. R.; Krishnamoorthy, K.; Granett, S.
L.; Schuller, D. J.; Dominy, J. E., Jr.; Begley, T. P.; Stipanuk, M. H.;
Karplus, P. A. Biochemistry 2008, 47, 11390.
(4) (a) Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W. J. Am.
Chem. Soc. 2005, 127, 4178. (b) Lee, Y.-M.; Hong, S.; Morimoto, Y.;
Shin, W.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2010, 132, 10668.
(c) MacBeth, C. E.; Golombek, A. P.; Young, V. G., Jr.; Yang, C.;
Kuczera, K.; Hendrich, M. P.; Borovik, A. S. Science 2000, 289, 938.
8761
dx.doi.org/10.1021/ja302112y | J. Am. Chem. Soc. 2012, 134, 8758−8761